a.
Từ A kẻ \(AE\perp SB\) (1)
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
\(\Rightarrow BC\perp AE\) (2)
(1);(2) \(\Rightarrow AE\perp\left(SBC\right)\Rightarrow AE=d\left(A;\left(SBC\right)\right)\)
Hệ thức lượng: \(AE=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{a\sqrt{2}}{2}\)
b.
Từ O kẻ \(OF\perp AD\)
\(SA\perp\left(ABCD\right)\Rightarrow SA\perp OF\)
\(\Rightarrow OF\perp\left(SAD\right)\Rightarrow OF=d\left(O;\left(SAD\right)\right)\)
OF là đường trung bình tam giác ABD \(\Rightarrow OF=\dfrac{1}{2}AB=\dfrac{a}{2}\)