Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy (ABCD) và SA = 2a. Tính cosin của góc giữa đường thẳng SB và mặt phẳng (SAD)
A. 5 5
B. 2 5 5
C. 1 2
D. 1
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy (ABCD) và SA = 2a. Tính cosin của góc giữa đường thẳng SB và mặt phẳng (SAD)?
A. 5 5
B. 2 5 5
C. 1 2
D. 1
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy (ABCD) và SA = 2a. Tính cosin của góc giữa đường thẳng SB và mặt phẳng (SAD) .
A. 5 5
B. 2 5 5
C. 1 2
D .1
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy và SA = 2a. Tính cosin góc giữa đường thẳng SB và mặt phẳng (SAD)
A. 5 5
B. 2 5 5
C. 1 2
D. 1
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a. Cạnh SA vuông góc với mặt phẳng đáy (ABCD), SA=a 3 . Góc tạo với mặt phẳng (SAB) và (SCD) bằng
A. 300
B. 600
C. 900
D. 450
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách từ điểm C đến mặt phẳng (SAD).
A. a 3 6
B. a 3 2
C. a 3 3
D. a 3 4
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD). Tứ giác ABCD là hình vuông cạnh a, S A = 2 a . Gọi H là hình chiếu vuông góc của A trên SB. Tính khoảng cách từ H đến mặt phẳng (SCD).
A. 4 a 5 5 .
B. 4 a 5 25 .
C. 2 a 5 5 .
D. 8 a 5 25 .
Cho hình chóp S.ABCD có đáy là hình vuông tại A và D, S A ⊥ ( A B C D ) . Góc giữa SB và mặt phẳng đáy bằng 45 o . E là trung điểm của SD, A B = 2 a , A D = D C = a . Tính khoảng cách từ điểm B đến mặt phẳng (ACE)
A . 2 a 3 .
B . 4 a 3 .
C. a
D . 3 a 4 .
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh A B = a , B C = 2 a . Hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy (ABCD) cạnh S A = a 15 . Thể tích của khối chóp S.ABCD bằng
A. 2 a 3 15
B. a 3 15 3
C. 2 a 3 15 3
D. 2 a 3 15 6