AM là hình chiếu của SM trên (ABCD).
- Xét tam giác vuông ABM ta có:
- Xét tam giác vuông SAM ta có:
AM là hình chiếu của SM trên (ABCD).
- Xét tam giác vuông ABM ta có:
- Xét tam giác vuông SAM ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA ⊥ (ABCD) và S A = a 15 Gọi M, N lần lượt là trung điểm của BC và CD: Chứng minh (SAC) ⊥ (SBD).
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AB = 2a, BC = CD = AD = a. Gọi M là trung điểm của AB. Biết SC = SD = SM và góc giữa cạnh bên SA và mặt phẳng đáy (ABCD) là 30 0 . Thể tích hình chóp đó là:
A . 3 a 3 6
B . 3 a 3 2
C . 3 3 a 3 2
D . 3 a 3 8
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA ⊥ (ABCD) và S A = a 15 Gọi M, N lần lượt là trung điểm của BC và CD: Tính khoảng cách từ điểm C đến mặt phẳng (SMN)?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm 0; cạnh bên SA vuông góc với mặt phẳng (ABCD) và SA=a. Gọi M,N lần lượt là trung điểm của SD và BC. Tính khoảng cách từ điểm M đến mặt phẳng (SBC)
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD). Góc giữa mặt phẳng (SBC) và (ABCD) bằng 45 0 . Gọi M, N lần lượt là trung điểm của AB, AD. Tính thể tích khối chóp S.CDMN theo a
A . 5 a 3 8
B . a 3 8
C . 5 a 3 24
D . a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bên SA vuông góc với mặt phẳng (ABCD) và SC =10√5. Gọi M,N lần lượt là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.
Giúp mình cách làm với ạ 😍
cho hình chóp sabcd có đáy abcd là hình vuông cạnh a sa vuông góc với đáy sa=a . gọi M,N lần lượt là trung điểm của SB và SD . Tính số đo góc giữa hai mặt phẳng (AMN) và (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a . Gọi M, N lần lượt là trung điểm của các cạnh AB, AD; H là giao điểm của CN và DM. Biết SH=a và vuông góc với mặt đáy (ABCD). Khoảng cách giữa hai đường thẳng MD và SC là
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\) ,\(SA=a\) và vuông góc với đáy \(\left(ABCD\right)\) .Gọi \(M\) là trung điểm của \(BC\).Tính cosin của góc giữa hai mặt phẳng \(\left(SMD\right)\) và \(\left(ABCD\right)\).