Gọi O = A C ∩ B D . Ta có
B D ⊥ A C B D ⊥ S C ⇒ B D ⊥ S A C
Kẻ OI ⊥ SC nên OI là đoạn vuông góc chung của BD và SC. Lại có ∆ I C O ~ A C S nên suy ra O I = 3 a 29 26 Vậy d = 3 a 29 26
Đáp án B
Gọi O = A C ∩ B D . Ta có
B D ⊥ A C B D ⊥ S C ⇒ B D ⊥ S A C
Kẻ OI ⊥ SC nên OI là đoạn vuông góc chung của BD và SC. Lại có ∆ I C O ~ A C S nên suy ra O I = 3 a 29 26 Vậy d = 3 a 29 26
Đáp án B
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA vuông góc với mặt phẳng (ABCD) và SA=a. Tính theo a khoảng cách d giữa hai đường thẳng SC và BD.
A. d = a 2 2
B. d = a 3 3
C. d = a 5 5
D. d = a 6 6
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA vuông góc với mặt phẳng (ABCD) và SA=a. Tính theo a khoảng cách d giữa hai đường thẳng SC và BD.
A. d = a 2 2
B. d = a 3 3
C. d = a 5 5
D. d = a 6 6
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBC) và mặt phẳng đáy bằng 60 ° . Khoảng cách từ D đến mặt phẳng (SBC) bằng
A. 6 a 4
B. a 2
C. 3 a 2
D. 15 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, góc giữa SC và mặt đáy bằng 45°. Tính khoảng cách d giữa hai đường thẳng SB và AC.
A. d = a 10 5
B. d = 2 2 a 5
C. d = 3 a 5
D. d = 2 5 a 5
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng A B C D , góc giữa đường thẳng SC và mặt phẳng A B C D bằng 60 ° . Biết rằng thể tích khối chóp S.ABCD bằng 3 a 3 2 , tính khoảng cách d giữa hai đường thẳng SB và AC.
A. d = 3 a 2 13
B. a 30 5
C. 3 a 26 13
D. a 15 5
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, B A D ^ = 60 ° , cạnh bên SA vuông góc với đáy. Biết rằng góc giữa hai mặt phẳng (SBC) và (SCD) bằng 60 ° . Gọi K là trung điểm của SC. Khoảng cách giữa hai đường thẳng AD, BK bằng
A. a 2
B. a 3 4
C. a 3 2
D. a 4
Hình chóp S.ABCD có đáy là hình thoi cạnh a, góc B A C = 60 o , SA vuông góc với mp(ABCD) góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 60 ° . Khoảng cách từ A đến mp (SBC) bằng:
A. a 2 3
B. 2a
C. 3 a 4
D. a
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB = a, BC = 2a. Cạnh SA vuông góc với mặt phẳng đáy (ABCD), SA = 2a. Khoảng cách giữa hai đường thẳng BD và SC bằng
A. a 2 3
B. a 3 2
C. 3 a 2
D. 2 a 3
Cho hình chóp S.ABCD đáy ABCD là hình thang vuông tại A và D, AD=BA=2a, CD=a, góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 60 ° . Gọi I là trung điểm của cạnh AD. Biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Thể tích khối chóp S.ABCD tính theo a bằng
A. 3 a 3 15 5
B. 3 a 3 15 15
C. a 3 15 5
D. 3 a 3 5 15