Cho hình chóp S.ABCD có đáy là hình chữ nhật AB=3; AD=2. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho
A. V = 32 π 3
B. V = 20 π 3
C. V = 16 π 3
D. V = 10 π 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật A B = a , A D = a 2 . Góc giữa hai mặt phẳng (SAC) và (ABCD) bằng 60 0 . Gọi H là trung điểm của AB. Biết rằng tam giác SAB cân tại H và nằm trong mặt phẳng vuông góc với đáy. Tính theo a bán kính mặt cầu ngoại tiếp hình chóp A.HAC
A. 9 2 a 8
B. 62 a 16
C. 62 a 8
D. 31 a 32
Cho hình chóp S.ABCD có đáy ABCD là vuông cạnh 2a, mặt bên SAB là tam giác cân nằm trong mặt phẳng vuông góc với đáy, AS B = 120 ° . Tính bán kính mặt cầu (S) ngoại tiếp hình chóp.
A. 2 a 2
B. 21 3 a
C. a 2
D. Kết quả khác
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M,N lần lượt là trung điểm của BC và CD. Tính bán kính R của khối cầu ngoại tiếp khối chóp S.CMN
A. R = a 29 8
B. R = a 93 12
C. R = a 37 6
D. R = 5 a 3 12
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M và N lần lượt là trung điểm của BC và CD. Tính bán kính R của khối cầu ngoại tiếp hình chóp S.CMN
A. R = 5 a 3 12 .
B. R = a 29 8 .
C. R = a 93 8 .
D. R = a 37 6 .
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a , A B C ^ = 60 0 . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính diện tích S m c của mặt cầu ngoại tiếp hình chóp S.ABC.
A. S m c = 13 π a 2 12
B. S m c = 5 π a 2 3
C. S m c = 13 π a 2 36
D. S m c = 5 π a 2 9
Cho hình chóp S.ABCD đáy ABCD là hình chữ nhật cạnh AB = 2a,AD = a , ∆ S A D đều và nằm trong mặt phẳng vuông góc với đáy. Diện tích xung quanh của mặt cầu ngoại tiếp hình chóp S.ABCD là:
A. 16 π 3 a 2
B. 57 π 18 a 2
C. 48 π 9 a 2
D. 24 π 9 a 2
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB=BC=a; AD = 2a. Tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính diện tích mặt cầu ngoại tiếp khối chóp tam giác S.ABC.
A. 3 πa 2
B. 5 πa 2
C. 6 πa 2
D. 10 πa 2
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AD = a , AB = 2 a , cạnh bên SA = a 3 và vuông góc với mặt phẳng đáy (ABCD). Gọi M là trung điểm AB. Tính bán kính hình cầu ngoại tiếp hình chóp S.AMD.
A. a 5 2
B. a 5 4
C. a 2 2
D. a 3 2