Hình chóp S.ABC có SB=SC=BC=CA=a Hai mặt phẳng (ABC) và (ASC) cùng vuông góc với (SBC) Thể tích khối chóp S.ABC bằng
![]()



Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C ; SA vuông góc với đáy; SC = a. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC). Tính để thể tích khối chóp S.ABC lớn nhất
![]()



Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Biết SA vuông góc với mặt phẳng đáy và SB = a 10 , BC = 2a, SC = 2a 3 . Thể tích khối chóp S.ABC là:
A . 3 a 3 2
B . 3 a 3 2
C . 3 a 3
D . a 3
Cho hình chóp S.ABC có SA vuông góc với (ABC) ,
. Gọi
B
1
,
C
1
lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích mặt cầu ngoại tiếp hình chóp A.BC
C
1
B
1
.

![]()


Cho hình chóp S.ABC có A S B ^ = C S B ^ = 60 0 , A S C ^ = 90 0 và SA = SB = SC = a. Tính khoảng cách d từ điểm A đến mặt phẳng (SBC)
A . d = 2 a 6
B . d = a 6 3
C . d = 2 a 6 3
D . d = a 6
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy. Gọi M là trung điểm của BC. Mặt phẳng (P) đi qua A và vuông góc với SM cắt SB, SC lần lượt tại E, F. Biết
Tính thể tích V của khối chóp S.ABC




Cho hình chóp S.ABCD có đáy ABCD là hình vuông, các tam giác SAB và SAD là những tam giác vuông tại A . Mặt phẳng (P) đi qua A và vuông góc với cạnh bên SC cắt SB, SC, SD lần lượt tại các điểm M, N, P. Biết SA=8a. ASC= 60 o Tính thể tích khối cầu ngoại tiếp đa diện ABCD.MNP?
![]()
![]()
![]()
![]()
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh bằng a, A B C ^ = 60 0 , SA=SB=SC, SD= 2a. Gọi (P) là mặt phẳng qua A và vuông góc với SB tại K. Mặt phẳng (P) chia khối chóp S.ABCD thành hai phần có thể tích V 1 ; V 2 trong đó V 1 là thể tích khối đa diện chứa đỉnh S. Tính V 1 V 2
A. 11
B. 7
C. 9
D. 4
Hình chóp tứ giác đều S.ABCD có cạnh đáy có độ dài a. Mặt phẳng (P) qua A và vuông góc với SC cắt SB, SC, SD lần lượt tại B’, C’, D’ sao cho SB’= 2BB’. Tỉ số giữa thể tích hình chóp S.AB’C’D’ và thể tích hình chóp S.ABCD bằng
A. 2 3
B. 4 9
C. 1 3
D. 4 27