Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), S A = a , A B = a , A C = 2 a , B A C = 60 ° . Tính thể tích khối cầu ngoại tiếp hình chóp S.ABC

A. V = 20 5 π a 3 3

B.  V = 5 5 6 π a 3

C.  V = 5 5 π 2 a 3

D.  V = 5 6 π a 3

Cao Minh Tâm
8 tháng 12 2019 lúc 12:46

Đáp án B

Phương pháp:

- Chứng minh Δ A B C vuông tại B, tìm tâm và bán kính đường tròn ngoại tiếp tam giác đáy.

- Sử dụng công thức R 2 = h 2 4 + r 2 với R là bán kính hình cầu ngoại tiếp khối chóp, h là chiều cao, r là bán kính đường tròn ngoại tiếp đa giác đáy.

Cách giải:

Ta có:  cos 60 ° = 1 2 = a 2 a → cos B A C = A B A C

⇒ Δ A B C  vuông tại B.

Gọi M là trung điểm AC.

⇒ M  là tâm đường tròn ngoại tiếp  Δ A B C

⇒ M A = M A = A C 2 = a

Gọi r là bán kính đường tròn ngoại tiếp tam giác đáy.

R là bán kính mặt cầu ngoại tiếp hình chóp.

h là chiều cao hình chóp.

Ta có công thức sau:

R 2 = h 2 4 + r 2 ⇒ R 2 = a 2 4 + a 2 = a 5 2

⇒ V = 4 3 π R 3 = 5 a 5 6

Chú ý khi giải:

HS cần linh hoạt trong việc chứng minh Δ A B C vuông tại B và biết sử dụng công thức liên hệ giữa R, r, h.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết