Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB = a, B C = a 3 , mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Thể tích V của khối chóp S.ABC là
A. V = 2 a 3 6 12
B. V = a 3 6 6
C. V = a 3 6 12
D. V = a 3 6 4
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SC. Biết . Thể tích của khối chóp S.ABC bằng
A. 3 2
B. 3 4
C. 3 6
D. 3 12
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Thể tích V của khối chóp S.ABC là
A. V = a 3
B. V = 2 a 3
C. V = a 3 8
D. V = a 3 2
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích V khối cầu ngoại tiếp hình chóp S.ABC
A. V = 4 3 π a 3 27
B. V = 5 15 π a 3 54
C. V = 5 15 π a 3 18
D. V = 5 π a 3 3
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SC. Biết V S . A B H V S . A B C = 16 9 . Thể tích của khối chóp S.ABC bằng
A. 3 2
B. 3 4
C. 3 6
D. 3 12
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, cạnh AB = 2a . Tam giác SAB là tam giác đều và nằm trong mặt phắng vuông góc với đáy. Gọi M là trung điểm SB và N là điểm trên cạnh SC sao cho SC=3SN. Tính thể tích V của khối chóp S.AMN.
A. V = 2 3 a 3 9
B. V = 3 a 3 9
C. V = 3 a 3 3
D. V = 2 3 a 3 3
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho biết ASB ^ = 120 ° .
A. V = 5 15 π 54 .
B. V = 4 3 π 27 .
C. V = 5 π 3 .
D. V = 13 78 π 27 .
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho biết A S B ^ = 120 0 .
A. V = 5 15 π 54 .
B. V = 4 3 π 27 .
C. V = 5 π 3 .
D. V = 13 78 π 27 .
Cho hình chóp S.ABC có đáy là tam giác cân tại A, A B = A C = a , B A C ^ = 120 0 . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Thể tích V của khối chóp S.ABC là
A. V = a 3 8 .
B. V = a 3 .
C. V = a 3 2 .
D. V = 2 a 3 .