a: Xét ΔHMI và ΔHPK có
goc IMH=góc KPH
HM=HP
góc MHI=góc PHK
Do đó: ΔHMI=ΔHPK
=>HI=HK và MI=PK
=>I đối xứng với K qua H
b: Xét tứ giác MIPK có
MI//PK
MI=PK
Do đó: MIPK là hình bình hành
a: Xét ΔHMI và ΔHPK có
goc IMH=góc KPH
HM=HP
góc MHI=góc PHK
Do đó: ΔHMI=ΔHPK
=>HI=HK và MI=PK
=>I đối xứng với K qua H
b: Xét tứ giác MIPK có
MI//PK
MI=PK
Do đó: MIPK là hình bình hành
Hình bình hành MNPQ ( MN song song PQ). I là giao điểm của MP và NQ . Qua I kẻ đường thẳng song song với MN cắt MQ ở E và cắt NP ở F . Chứng minh I là trung điểm của EF
cho tam giác MPQ nhọn có MP>MQ gọi I là trung điểm của PQ trên tia đối của tia IM lấy điểm N sao cho IM=IN a) chứng minh tứ gicas MPNQ là hình bình hành b) gọi K là điểm đối của M qua đường thẳng PQ H là giao điểm của PQ và MK chứng minh MK vuông góc với KN c) tứ giác PQKN là hình gì vì sao
Cho hình bình hành MNPQ,các đường chéo cắt nhau tại I.Gọi H,K theo thứ tự là trung điểm của IN,IQ.
a,Chứng Minh H đối xứng với K qua điểm I
b,Tứ giác MKPH là hình gì,vì sao?
c, Gọi E là giao điểm của MK và OP, F là giao điểm của PH và MN.Chứng Minh KE=HF
Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Đường thẳng qua O không song song với AD cắt AB tại M và CD tại N.
a. Chứng minh M đối xứng với N qua O.
b, Chứng tỏ rằng tứ giác AMCN là hình bình hành.
Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Đường thẳng qua O không song song với AD cắt AB tại M và CD tại N.
a. Chứng minh M đối xứng với N qua O.
b, Chứng tỏ rằng tứ giác AMCN là hình bình hành.
Câu 18: Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Đường thẳng qua O không song song với AD cắt AB tại M và CD tại N.
a. Chứng minh M đối xứng với N qua O.
b, Chứng tỏ rằng tứ giác AMCN là hình bình hành.
bài 1. Cho tam giác MPQ vuông tại M . MP < MQ . I là trung điểm của PQ . Từ I kẻ đường thẳng song song với MQ và MP lần lượt cắt MP tại K và cắt MQ tại H .
a. Chứng minh tứ giác KHQP là hình thang.
b. Chứng minh tứ giác MKIH là hình chữ nhật.
c. Gọi O là trung điểm của MI . Chứng minh K đối xứng với H qua O.
bài 2.
Cho tam giác ABC vuông tại A , BC = 8 cm . Hai trung tuyến BM và CN cắt nhau tại G.
a. Tính MN.
b. Gọi K và I lần lượt là trung điểm của BG và CG.Chứng minh NMQK là hình bình hành.
c. Trên trung tuyến AI của tam giác ABC , lấy điểm H sao cho IA = IH . Chứng minh tứ giác ABHC là hình chữ nhật.
MONG MỌI NGƯỜI GIÚP MÌNH VỚI Ạ
Cho ΔABC cân tại A.Lấy E thuộc cạnh AB.Qua E vẽ đường thẳng vuông góc với BC tại D. Lấy H là trung điểm BE. Gọi I là điểm đối xứng với D qua H
a) Chứng minh tứ giác BDEI là hình chữ nhật
b) Gọi L là điểm đối xứng của B qua D . Chứng minh IDLE là hình bình hành
c)Gọi G là giao điểm của IE và AC. Chứng minh IGCD là hình bình hành
d)DE cắt AC tại F.Lấy điểm K sao cho tứ giác DFKC là hình chữ nhật.Chứng minh I,A,K thẳng hàng
Câu 18: Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Đường thẳng qua O không song song với AD cắt AB tại M và CD tại N.
a. Chứng minh M đối xứng với N qua O.
b, Chứng tỏ rằng tứ giác AMCN là hình bình hành.
Câu 19: Thực hiện phép tính
a,(4x-1) . (2x^2-x-1)
b,(4x^3+8x^2-2x) : 2x
c,(6x^3-7x^2-16x+12) : (2x+3)
Câu 20: Phân tích các đa thức sau thành nhân tử
a,2x^3-8x^2+8x
b,2xy+2x+yz+z
c,x^2+2x+1-y^2
Câu 21: Tìm m để đa thức A(x)=3x^2+5x+m chia hết cho đa thức B(x)=x-2
âu 18: Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Đường thẳng qua O không song song với AD cắt AB tại M và CD tại N.
a. Chứng minh M đối xứng với N qua O.
b, Chứng tỏ rằng tứ giác AMCN là hình bình hành.
Câu 19: Thực hiện phép tính
a,(4x-1) . (2x^2-x-1)
b,(4x^3+8x^2-2x) : 2x
c,(6x^3-7x^2-16x+12) : (2x+3)
Câu 20: Phân tích các đa thức sau thành nhân tử
a,2x^3-8x^2+8x
b,2xy+2x+yz+z
c,x^2+2x+1-y^2
Câu 21: Tìm m để đa thức A(x)=3x^2+5x+m chia hết cho đa thức B(x)=x-2