Ta có: \(\widehat{MQA}=\dfrac{\widehat{MQP}}{2}\)
\(\widehat{PNB}=\dfrac{\widehat{PNM}}{2}\)
mà \(\widehat{MQP}=\widehat{PNM}\)
nên \(\widehat{MQA}=\widehat{PNB}\)
Xét ΔMQA và ΔPNB có
\(\widehat{MQA}=\widehat{PNB}\)
MQ=PN
\(\widehat{QMA}=\widehat{NPB}\)
Do đó: ΔMQA=ΔPNB
Suy ra: AQ=PN và AM=PB
Ta có: AM+AN=MN
PB+BQ=PQ
mà AM=PB
và MN=PQ
nên AN=BQ
Xét tứ giác ANBQ có
AN//BQ
AN=BQ
Do đó:ANBQ là hình bình hành