Sửa đề: A,B,C,D lần lượt là trung điểm của MN,NP,PQ,MQ
Xét ΔNMP có NA/NM=NB/NP
nên AB//MP và BA/MP=NA/NM=1/2
Xét ΔQMP có QC/QP=QD/QM=1/2
nên DC//MP và DC=1/2MP
=>AB//CD và AB=CD
=>ABCD là hình bình hành
Sửa đề: A,B,C,D lần lượt là trung điểm của MN,NP,PQ,MQ
Xét ΔNMP có NA/NM=NB/NP
nên AB//MP và BA/MP=NA/NM=1/2
Xét ΔQMP có QC/QP=QD/QM=1/2
nên DC//MP và DC=1/2MP
=>AB//CD và AB=CD
=>ABCD là hình bình hành
cho tứ giác MNPQ, điểm A,B,C,D lần lượt là trung điểm của các cạnh MN,NP,PQ, QM. CMR tứ giác ABCD là hình bình hành
Cho tứ giác MNPQ, gọi A, B, C, D lần lượt là trung điểm của MN, NP, PQ, QM. Chứng minh tứ giác ABCD là hình bình hành.
cho tứ giác MNPQ,gọi H K I G lần lượt là trung điểm của các cạnh MN,NP PQ QM a.tứ giác HKIG là hình gì?vì sao? b.tứ giác MNPQ có thêm điều kiện gì thì tứ giác HKIG là hình chữ nhật ?vì sao?
Cho tứ giác MNPQ .Gọi E,F,G,H lần lượt là trung điểm của các cạnh MN,NP,PQ,QM. Chứng minh tứ giác EFGH là hình bình hành
Cho tứ giác MNPQ. Gọi E,F,G,H lần lượt là trung điểm của các cạnh MN, NP, PQ, QM. Chứng minh: EFGH là hình bình hành
Cho tử giác MNPQ. Gọi E. F. G. H lần lượt là trung điểm của các cạnh MN. NP PQ. QM CMR: Tử giác EFGH là hình bình hành.
Cho tứ giác MNPQ có MQ = NP. Gọi D, E, F, G lần lượt là trung điểm của MN, MP, PQ, NP.
a. Tứ giác DEFG là hình gì? Vì sao?
b. Tứ giác MNPQ cần điều kiện gì để DEFG là hình chữ nhật?
Cho tử giác MNPQ. Gọi E. F. G. H lần lượt là trung điểm của các cạnh MN. NP PQ. QM CMR Tử giác EFGH là hình bình hành.
Cho hình bình hành MNPQ có MN = 2MQ. Gọi H, K lần lượt là trung điểm của MN và PQ. a) Chứng minh tứ giác MHKQ là hình thoi. b) Gọi I là giao điểm của MK và QH, gọi A là giao điểm của HP và KN. Hỏi tứ giác HIKA là hình gì? Vì sao? c) Hình bình hành MNPQ nói trên có thêm điều kiện gì thi HIKA là hình vuông?