Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
\(\widehat{ADH}=\widehat{CBK}\)
Do đó: ΔAHD=ΔCKB
Suy ra: AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó:AHCK là hình bình hành
Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
\(\widehat{ADH}=\widehat{CBK}\)
Do đó: ΔAHD=ΔCKB
Suy ra: AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó:AHCK là hình bình hành
Cho hình bình hành ABCD. Gọi H và K lần lượt là hình chiếu của A và C trên đường chéo BD.
a)v Chứng minh rằng DH = BK
b) Chứng minh rằng tứ giác AHCK là hình bình hành
c) Gọi O là trung điểm của HK. Chứng minh rằng ba điểm A, O, C thẳng hàng.
cho hình bình hành abcd có e là hình chiếu của a và f là hình chiếu của c lên đường chéo bd
1chung minh rằng tam giác ade=tam giác cbf
2,chứng minh rằng tứ giác aecf là hình bình hành
Cho hình bình hành ABCD (AC>BD). Gọi E,F lần lượt là hình chiếu của B, D trên AC, gọi H, K lần lượt là hình chiếu của C trên AB và AD. Chứng minh tam giác CHK đồng dạng với tam giác BCA
Bài 1: Cho hình bình hành ABCD , đường chéo BD . Kẻ AH và CK vuông góc với BD tại H và K . Chứng minh tứ giác AHCK là hình bình hành. Bài 2: Cho hình bình hành ABCD có M N, lần lượt là trung điểm của AB CD , . AN và CM cắt BD lần lượt tại E và F . a) Chứng minh AMCN là hình bình hành. ( Hình 6) b) Từ F kẻ đường thẳng song song với AB cắt AN tại G. Chứng minh BF FE ED . Bài 3: Cho tam giác ABC cân tại A , lấy điểm D trên cạnh AB , điểm E trên cạnh AC sao cho BD CE . a) Tứ giác BDEC là hì gì? Vì sao? b) Các điểm D E, ở vị trí nào thì BD DE EC
Cho hình bình hành ABCD . Tứ giác A,H hạ AH ,AK lâng lượt vuông góc với BD .chứng minh rằng tues giác AHCK cũng là hình bình hành
Cho hình bình hành ABCD, dựng AH, CK lần lượt vuông góc DB (H, K thuộc BD)
a) Chứng minh tứ giác AHCK là hình bình hành
b) Lấy O là trung điểm của HK. Chứng minh A, O, C thẳng hàng
c) Cho AH cắt CD tại I, CK cắt AB tại M. CMP: Tứ giác AMCI là hình bình hành
d) O trung điểm IM
Cho hình bình hành ABCD có E là hình chiếu của A và F là hình chiếu của C lên đường chéo BD
a) CM: tam giác ADE = tam giác CBF
b) CM: Tứ giác AECF là hình bình hành.
Cho hình bình hành ABCD (AC>BD) kẻ BE,DF vuông góc vs AC (E,F thuộc AC)
1) cm: tam giác ABE = tam giác CDF. Tứ giác BDEF là hình bình hành
2) Gọi H và K thứ tự là hình chiếu của C lên AB.
cHỨNG MINH: tam giác ADF ~ tam giác ACK
3) Chứng minh AC^2=AB.AH+AD.AK
Cho tam giác ABC AB nhỏ hơn AC Gọi D E F lần lượt của các cạnh AB AC BC Chứng minh rằng tứ giác BD EF là hình bình hành vẽ đường cao AH so sánh HE và DF Chứng minh tứ giác EFHD là hình thang cân