Cho hình bình hành ABCD. Gọi H, K lần lượt là trung điểm của AB và CD.
1) Chứng minh AHKD là hình bình hành.
2) Gọi I là giao điểm của AK và DH; J là giao điểm của HC và KB. Chứng minh IJ//CD
v à I J 12 C D .
3) Chứng minh ba đường thẳng IJ, AC, HK đồng quy.
Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm AB và CD. Gọi M, N lần lượt là giao điểm của AF và CE với đường chéo DB. Chứng minh:
a/ DM = MN = NB
b/ EMFN là hình bình hành.
c/ Gọi I, J lần lượt là trung điểm của BC và AD. Chứng minh IJ, MN, EF đồng quy.
Giúp mình với
Cho hình bình hành ABCD, E và F lần lượt là trung điểm của AB, CD. Gọi M, N lần lượt là giao điểm của AF, CE VỚI BD.
a) Chứng minh: Tứ giác AECF là hình bình hành
b) Chứng minh DM = MN = NB
c) Chứng minh MENF là hình bình hành.
d) AN cắt BC tại I. Chứng minh IJ,MN, EF đồng quy.
Cho tứ giác ABCD, gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. a) Chứng minh rằng MNPQ là hình bình hành b) Gọi I, J lần lượt là trung điểm của AC và BD. Chứng minh rằng các đoạn thẳng MP, QN, IJ đồng quy tại một điểm.
Cho hình bình hành ABCD có AB = 2.AD. Gọi M, N lần lượt là trung điểm của AB và CD. a) Chứng minh tử giác BMDN là hình bình hành. b) Tia DM cắt CB tại I. Tử giác DNBI là hình gì ? Vì sao ? c) . Gọi K là giao điểm của DB và NI. Chứng minh M, K, C
Hình bình hành:
1. Cho tứ giác ABC, gọi E, F là trung điểm của AB và CD; M, N, P, Q lần lượt là trung điểm các đoạn AF, CE, BF và DE. C Chứng minh rằng MNPQ là hình bình hành.
2. Cho hình bình hành ABCD. Các điểm E, F thuộc đường chéo AC sao cho AE = EF = FC. Gọi M là giao điểm của BF và CD; N là giao điểm của DE và AB. Chứng minh rằng:
a. M, N theo thứ tự là trung điểm của CD, AB.
b. EMFN là hình bình hành.
Bài 8: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F lần lượt là trung điểm của AB và CD. Gọi I là giao điểm của BF và DE, K là giao điểm của BF và CE. a/ Chứng minh tứ giác AECF là hình bình hành.
b/ Tứ giác AEFD là hình gì? Vì sao?
c/ Chứng minh tứ giác EIFK là hình chữ nhật.
d/ Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông.
Bài 9: Cho hình bình hành AABC, O là giao điểm hai đường chéo. Lấy E, F sao cho AE = EF = FC.
a/ Chứng minh tứ giác BEDF là hình bình hành.
b/ Gọi M là giao điểm của BC và DF. Chứng minh FM = FD
c/ Gọi I là giao điểm của CD và BF, K là giao điểm của AB và DE. Chứng minh ba điểm K, O, I thẳng hàng.
Cho hình bình hành ABCD có AB=2AD.Gọi E và F lần lượt là trung điểm của AB và CD. I là giao điểm của AF và DE,K là giao điểm của BF và CE. a)Chứng minh rằng tứ giác AECF là hình bình hành. b)Tứ giác AEFD là hình gì ? Vì sao? c) Chứng minh rằng tứ giác EIFK là hình chữ nhật. d) Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông.
cho hình bình hành ABCD.Gọi I và K lần lượt là trung điểm của CD,AB. chứng minh tứ giác AKID là hình bình hành