Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
=>AF//CE
Xét ΔDHC có
F là trung điểm của DC
FK//HC
Do đó: K là trung điểm của DH
=>DK=KH(1)
Xét ΔABK có
E là trung điểm của BA
EH//AK
Do đó: H là trung điểm của BK
=>DK=KH=HB
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
=>AF//CE
Xét ΔDHC có
F là trung điểm của DC
FK//HC
Do đó: K là trung điểm của DH
=>DK=KH(1)
Xét ΔABK có
E là trung điểm của BA
EH//AK
Do đó: H là trung điểm của BK
=>DK=KH=HB
Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm AB và CD. Gọi M, N lần lượt là giao điểm của AF và CE với đường chéo DB. Chứng minh:
a/ DM = MN = NB
b/ EMFN là hình bình hành.
c/ Gọi I, J lần lượt là trung điểm của BC và AD. Chứng minh IJ, MN, EF đồng quy.
Giúp mình với
Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AB và CD. Nối AF và CE, 2 đường này cắt đường chéo BD lần lượt tại M và N. Chứng minh vectơ DM = vectơ MN = vectơ NB.
Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Đường chéo BD cắt AF ở G và cắt CE ở H. Chứng minh rằng:
a) DG=GH=HB. b) Các tứ giác AECF, EGFH, AGCH là các hình bình hành
Cho hình bình hành ABCD có E ,F lần lượt là trung điểm của AB,CD.Đường chéo BD cắt CE tại I a)chứng minh rằng AEGF là hình bình hành . b)gọi K là giao điểm của AC và BD chứng minh ba điểm E,K,E thẳng hàng và CL=2EL
Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AD và BC. Đường chéo BD cắt AF và CE lần lượt tại M và N.
a) Chứng minh BM = MN = ND
b) Gọi I là trung điểm của CN. Chứng minh tứ giác DEMI là hình bình hành
. Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Qua điểm O, vẽ đường thẳng a cắt hai đường thẳng AD, BC lần lượt tại E, F, vẽ đường thẳng b cắt hai cạnh AB, CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành
Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. M và N lần lượt là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. F là giao điêm của CN và AB. CMR:
a) Tứ giác AMCN là hình bình hành
b) AF= CE
c) DE= 1/2EC
Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Qua điểm O, vẽ đường thẳng a cắt hai đường thẳng AD, BC lần lượt tại E, F. Qua O vẽ đưòng thẳng b cắt hai cạnh AB, CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành
Cho hình bình hành abcd có o là giao điểm của hai đường chéo ac và bd; m và n lần lượt là trung điểm của od và ob; gọi e là giao điểm của am và cd ; F là giao điểm của cn và ab. Chứng minh rằng :
A: tứ giác AMCN là hình bình hành(tui làm dc rồi); B: AF=CE; C: DE =1/2 EC
Cho hình bình hành ABCD. Gọi O là giao điểm hai đường chéo AC và BD. Qua điểm O, vẽ đường thẳng a cắt hai đường thẳng AB,CD lần lượt tại E, F. Qua O vẽ đường thẳng b cắt hai cạnh AB, CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành.
(Giúp tôi với, tôi là tôi vã lắm rồi Ọ^Ọ)