cho hình bình hành ABCD.Gọi E,F,G,H lần lượt thuộc cạnh AB,CD,EG,HF sao cho BE=DG,BF=DH.Chứng minh
a)EFGH là hình bình hành
b)các đường thẳng AC,DB,EG,HF đồng quy
ai đang online thì giúp mình với nhé!
Bài 31: Cho hình bình hành ABCD. Trên AB,BC,CD,DA lấy các điểm E,F,G,H sao cho AE=CG, BF=DH
Cm a, EFGH là hình bình hành b, AC,BD,EG,FH đồng quy
Cho hình bình hành ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Một đường thẳng đi qua O và cắt cạnh AD ở P và cạnh BC ở Q.
a. Chứng minh rằng OP = OQ.
b. Trên các cạnh AB, BC, CD, DA lấy lần lượt các điểm E, F, G, H sao cho tứ giác EFGH là hình bình hành. Chứng minh bốn đoạn AC, EG, FH và BD đồng quy.
1 ) Cho tam giác ABC . Phân giác góc A cắt cạnh BC tại d . Qua d vẻ đường thẳng song song với AB , đường này cắt AC tại E . Đường thẳng qua E // BC cắt AB tại F
- Chứng minh : AE = BF
2) Cho hình bình hành ABCD . Gọi MNPQ theo thứ tự là trung điểm của cạnh AB , BC , CD , DA đường thẳng AN cắt DM , BP theo thứ tự tại E và F . Đường thẳng CQ cắt BP , DM theo thứ tự G , H
A) chứng minh : tứ giác EFGH là hình bình hành
B ) chứng minh : các đường thẳng AC , BD , EG, FH đồng quy tại một điểm
Cho hình bình hành ABCD và hình bình hành EFGH. E thuộc AB, F thuộc BC, G thuộc CD, H thuộc DA và AE = CG, BF = DH. Chứng minh AC, BD, EG, HF đồng quy.
Cho tứ giác ABCD có E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. a) Chứng minh tứ giác EFGH là hình bình hành. b) Cho AC= 6cm; BD=8cm. Tính độ dài các cạnh của hình bình hành EFGH. 2 Giải giúp mình với
Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Gọi I và J lần lượt là trung điểm của AC và BD.
a) Chứng minh tứ giác EFGH là hình bình hành.
b) Chừng minh tứ giác IFJH là hình bình hành.
Bạn nào biết làm thì giúp Ngọc nhé! Mình cảm ơn nhiều!
Cho hình bình hành ABCD. Lấy E, F,G,H thuộc AB,BC,CD,DA sao cho AE = CG, BF = DH
a) tứ giác EFGH là hình bình hành?
b) AC, BD, EG, PH đồng quy
Cho hình bình hành ABCD tên các cạnh AB, BC, CD, DA lấy tương ứng các điểm E, F, G, H sao cho AE = CG; BF = DH. CMR:
a, EFGH là hình bình hành
b, Các đường thẳng AC; BD; EG; HF cắt nhau tại 1 điểm