ta có:
SABC = SADC
SAFE = SAHE
SEKC = SEGC
=> SABC – SAFE – SEKC = SADC – SAHE - SEGC
hay SEFBK = SEGDH
ta có:
SABC = SADC
SAFE = SAHE
SEKC = SEGC
=> SABC – SAFE – SEKC = SADC – SAHE - SEGC
hay SEFBK = SEGDH
Cho hình 125 trong đó ABCD là hình chữ nhật, E là một điểm bất kì nằm trên đường chéo AC, FG // AD và HK // AB. Chứng minh rằng hai hình chữ nhật EFBK và EGDH có cùng diện tích.
Ai giải giúp mình bài 13 sgk lớp 8 trang 119 mình cần gấp
Đề: Cho hình 125,trong đó ABCD là hình chữ nhật,E là một điểm bất kì nằm trên đường chéo AC,FG//AD và HK//AB.Chứng minh rằng hai hình chữ nhật EFBK và EGDH có cùng diện tích
Cho ABCD là hình chữ nhật trong đó E là điểm bất kỳ nằm trên đường chéo AC, FG // AD , HK // AB. Chứng minh diện tích EFBK = diện tích EGDH.
Cho hình chữ nhật ABCD. Qua E là một điểm bất kỳ nằm trên đường chéo AC, kẻ hai đường chéo FG//AD và HK//AB ( F ∈ AB, G ∈ DC, H ∈ AD, K ∈ DC ). Chứng minh rằng hai hình chữ nhật EFBK và EGDH có cùng diện tích.
Bài 1: cho hình chữ nhật ABCD. E là điểm bất kì trên đường chéo AC. đường thẳng qua E, song song với AD cắtt AB, DC lần lượt tại F, G. đường thẳng qua E, song song với AB cắt AD, BC lần lượt tại H, K. chứng minh 2 hình chữ nhật EFBK và EGDH có cùng diện tích
Cho hình chữ nhật ABCD. O là giao điểm hai đường chéo và một điểm P bất kì trên đường chéo BD (P nằm giữa O và D). Gọi M là điểm đối xứng của C qua P. a) Chứng minh tứ giác AMDB là hình thang. Xác định vị trí của P trên BD để AMDB là hình thang cân. b) Kẻ ME vuông góc AD, MF vuông góc BA. Chứng minh EF // AC và 3 điểm E, F, P thẳng hàng. c) Xác định vị trí P trên BD để tứ giác nối 4 điểm A, M, D, B là hình thang cân. d) Nếu hình chữ nhật ABCD có AB = 2BC. Gọi K là điểm trên AB sao cho góc ADK = $15^o$. Chứng minh tam giác CDK cân.
Cho hình chữ nhật ABCD có O là giao điểm của AC và BD. Lấy một điểm E bất kì trên đường chéo BD. Trên tia đối của tia EC lấy điểm F sao cho EF=EC. Vẽ FH và FK lần lượt vuông góc với AB và AD (H thuộc AB, K thuộc AD).
a) Chứng minh: BD=2AO.(đã làm)
b) Gọi I là giao điểm của KH và AF. Chứng minh I là trung điểm của KH.
c) Chứng minh tứ giác AIEO là hình bình hành.
d) Chứng minh I, K, E thẳng hàng.
Cho hình chữ nhật ABCD, M là một điểm bất kì nằm trong hình chữ nhật đó. Chứng minh MA + MC + MB + MD < AB+AD+AC.
Cho hình chữ nhật ABCD có M là 1 điểm bất kì nằm bên trong hình chữ nhật. CMR: MA+MB+MC+MD>AB+AC+AD