\(\int^{y=2x-m-5}_{\left(m-1\right)x-m\left(2x-m-5\right)=3m-1}\)
\(\int^{y=2x-m-5}_{mx-x-2mx+m^2+5m-3m+1=0}\)
\(\int^{y=2x-m-5}_{x\left(m+1\right)+\left(m+1\right)^2=0}\)
để pt trên có nghiêm duy nhất khi m+1 khác 0
<=> m khác -1
suy ra x=m+1
y=2(m+1)-m-5=2m+2-m-5=m-3
để x+y=0
<=>m+1+m-3=0
<=>2m=2
<=>m=1(tmdk)