CHo hình bình hành ABCD Gọi M ,N lần lượt là trung điêm của BC , CD . AM và AN cắt đường chéo BD tại E và F
C/m BE = EF
Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của BC, CD. Hai đường thẳng AM, AN cắt BD tại E, F. CMR:
a) E, F lần lượt là trọng tâm của tam giác ABC và ACD.
b) EB = EF = DF.
Cho hình bình hành ABCD.Gọi M, N lần lượt là trung điểm của BC, CD. Hai đường thẳng AM, AN cắt BD tại E, F. Chứng minh rằng:
A) E, F lần lượt là trọng tâm của các tam giác ABC và ACD
B)EB=EF=DF
(Gợi ý: Gọi O là giao điểm của 2 đường chéo)
Cho hình thang ABCD (AB//CD) gọi M là trung điểm của CD . E là giao điểm của BD và AM , F là giao điểm của BM và AC a. C/M EF // AB b. Đường thẳng EF cắt AD,BC lần lượt tại H và N. C/M HE=EF=FN
Cho hình bình hành ABCD, Gọi M và N lần lượt là trung điểm của AB và CD. Các đường thẳng AN và CM cắt đường chéo BD tại E và F.
a) Chứng minh rằng DE = EF = FB
b) Từ điểm F kẻ đường thẳng // DC cắt AN tại P. Chứng minh tứ giác DPFN là hình bình hành.
Cho hình bình hành ABCD, Gọi M và N lần lượt là trung điểm của AB và CD. Các đường thẳng AN và CM cắt đường chéo BD tại E và F.
a) Chứng minh rằng DE = EF = FB
b) Từ điểm F kẻ đường thẳng // DC cắt AN tại P. Chứng minh tứ giác DPFN là hình bình hành.
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB lần lượt cắt các đoạn thẳng AD, BD, AC, BC tại M, N, P, Q.
a/ Chứng minh MN = PQ.
b/ Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD. Chứng minh đường thẳng EF đi qua trung điểm của AB và DC
Cho hình vuông ABCD gọi M,N lần lượt là trung điểm của AB và AD. MD cắt AC tại P, NC cắt BD tại Q, MD cắt NC tại E, PQ cắt BE tại F. Chứng minh BC=BE và PF=EF