a: Tọa độ đỉnh của (P): y=x2-mx+2 là:
\(\left\{{}\begin{matrix}x=\dfrac{-\left(-m\right)}{2}=\dfrac{m}{2}\\y=-\dfrac{\left(-m\right)^2-4\cdot1\cdot2}{4}=-\dfrac{m^2-8}{4}\end{matrix}\right.\)
Vì a=1>0
nên hàm số đồng biến khi \(x>\dfrac{m}{2}\)
b: Vì a=1>0 nên giá trị nhỏ nhất của hàm số \(y=x^2-mx+2\) là tung độ đỉnh của đồ thị
=> \(y_{min}=-\dfrac{m^2-8}{4}\)
c: \(y_{min}=1\)
=>\(-m^2+8=4\)
=>-m2=-4
=>m2=4
=>\(\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\)
Đúng 1
Bình luận (0)