Cho hàm số y=f(x) có bảng biến thiên như hình vẽ, biết f(-1)=f(2) và f(0)=f(3)
Phương trình f(2sinx+1)=f(m) có đúng ba nghiệm thuộc đoạn - π 2 ; π 2 khi và chỉ khi
A. m ∈ 0 ; 2
B. m ∈ 1 ; 3 \ 0 ; 2
C. m ∈ f ( 2 ) ; f ( 0 )
D. m ∈ - 1 ; 3
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Cho hàm số y=f(x) . Hàm số y= f'(x) có bảng biến thiên như sau
Bất phương trình f ( x ) < ln x + m đúng với mọi x ∈ ( 0 ; 1 ) khi và chỉ khi
A. I = l a a
B. I = l a
C. I = l a ( a - 1 )
D. I = l a ( a + 1 )
Cho hàm số y=f(x) thoả mãn f(-2)=3, f(2)=2 và bảng xét dấu của đạo hàm như sau:
Bất phương trình 3 f ( x ) + m ≤ 4 f ( x ) + 1 + 4 m nghiệm đúng với mọi số thực x ∈ - 2 ; 2 khi và chỉ khi
A. m ∈ - 2 ; - 1
B. m ∈ - 2 ; - 1
C. m ∈ - 2 ; 3
D. m ∈ - 2 ; 3
Cho hàm số y=f(x). Hàm số y=f’(x) có đồ thị như hình vẽ:
Bất phương trình f x 36 + x + 3 - 2 x - 1 > m đúng với mọi mÎ(0;1) khi và chỉ khi
A. m ≤ f 1 + 9 36
B. m < f 1 + 9 36
C. m > f 1 + 9 36
D. m ≥ f 1 + 9 36
Cho hàm số y = f(x). Hàm số y = f ' x có đồ thị như hình bên. Biết f(-1) = 1, f - 1 e = 2 . Bất phương trình f(x) < ln(-x) + m đúng với mọi x ∈ - 1 ; - 1 e khi và chỉ khi
A. m > 2
B. m ≥ 2
C. m > 3
D. m ≥ 3
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f x > 0 , ∀ x ∈ R . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm phân thực biệt.
A. m > e
B. 0 < m ≤ 1 .
C. 0 < m < e .
D. 1 < m < e .
Cho hàm số y=f(x) là hàm đa thức hệ số thực. Hình vẽ bên là đồ thị của hai hàm số y=f(x) và y=f'(x) . Phương trình f(x)= m e x có hai nghiệm thực phân biệt thuộc đoạn [0;2] khi và chỉ khi m thuộc nửa khoảng [a;b). Giá trị của a+b gần nhất với giá trị nào dưới đây ?
A. 0,27.
B. −0,54.
C. −0,27.
D. 0,54.
Cho hàm số y=f(x). Hàm số y=f' (x) có bảng biến thiên như sau
Bất phương trình f ( e x ) < e 2 x + m nghiệm đúng với mọi x ∈ ( ln 2 ; ln 4 ) khi và chỉ khi
A. m ≥ f ( 2 ) - 4
B. m ≥ f ( 4 ) - 16
C. m > f ( 2 ) - 4
D. m > f ( 4 ) - 16