Cho hàm số y=f(x) liên tục trên đoạn [0;π/3].Biết f’(x).cosx+f(x).sinx=1, x ϵ [0;π/3] và f(0)=1. Tính tích phân I = ∫ 0 π 3 f x d x
A. 1/2 + π/3
B. 3 + 1 2
C. 3 - 1 2
D. 1/2
Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [ 0 ; 2 ] và thỏa mãn f ( 0 ) = 2 , ∫ 0 2 ( 2 x - 4 ) . f ' ( x ) d x = 4 . Tính tích phân I = ∫ 0 2 f ( x ) d x .
A. I = 2
B. I = - 2
C. I = 6
D. I = - 6
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1)=0 và ∫ 0 1 [ f ' ( x ) ] 2 d x = ∫ 0 1 ( x + 1 ) e x f ( x ) d x = e 2 - 1 4 Tính tích phân I= I = ∫ 0 1 f ( x ) d x
A. I=2-e
B. I=e-2
C. I=e/2
D. I = e - 1 2
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a – x) = 1, ∀ x ∈ [0;a]. Tính tích phân I = ∫ 0 a 1 1 + f ( x ) d x
Cho hàm số y=f(x) liên tục và có đạo hàm trên R thỏa mãn f(2)=-2, ∫ 0 2 f x d x = 1. Tính tích phân I = ∫ 0 4 f ' x d x .
A. I = -10
B. I = -5
C. I = 0
D. I = -18
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;π/4] thỏa mãn f π 4 = 3 , ∫ 0 π 4 f x cos x d x = 1 và ∫ 0 π 4 sin x . tan x . f x d x = 2 Tích phân ∫ 0 π 4 sin x f ' x d x bằng
A. 4.
B. 2 + 3 2 2
C. 1 + 3 2 2
D. 6.
Cho hàm số y = f(x) liên tục trên R thỏa mãn điều kiện
2 x [ 1 + f ( x ) ] = [ f ' ( x ) ] 3 , ∀ x ∈ R f ( 0 ) = - 1 Tích phân ∫ 0 1 f ( x ) dx bằng
A. 1 4
B. - 5 6
C. 1 3
D. - 2 3
Cho hàm số f(x) và g(x) liên tục, có đạo hàm trên R và thỏa mãn f ' 0 . f ' 2 ≠ 0 và g x f ' x = x x - 2 e x . Tìm giá trị của tích phân I = ∫ 0 2 f x g ' x d x
A. -4
B. e - 2
C. 4
D. 2 - e
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [-1; 3] và thỏa mãn f(-1) = 4; f(3) = 7. Giá trị của I = ∫ - 1 3 5 f ' t d t bằng
A. I = 20.
B. I = 3.
C. I = 10.
D. I = 15.