Phương trình f ( x ) = 5 3 mà y = 5 3 ≈ 1 , 67 là đường thẳng cắt đồ thị tại 3 điểm phân biệt.
Do đó PT đã cho có 3 nghiệm phân biệt.
Chọn đáp án C.
Phương trình f ( x ) = 5 3 mà y = 5 3 ≈ 1 , 67 là đường thẳng cắt đồ thị tại 3 điểm phân biệt.
Do đó PT đã cho có 3 nghiệm phân biệt.
Chọn đáp án C.
Cho hàm số y=f(x) liên tục trên đoạn [-2;2] và có đồ thị như hình vẽ:
Số nghiệm của phương trình 3 f ( x + 2 ) - 4 = 0 trên đoạn [-2;2] là?
A. 4
B. 2
C. 3
D. 1
Cho hàm số y = f(x) có đạo hàm liên tục trên R, đồ thị của hàm số y = f′(x) như hình vẽ bên. Số nghiệm thực phân biệt của phương trình f(x) = f(0) trên đoạn [−3;6] là
A. 4
B. 3.
C. 5.
D. 2.
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình 2 f 2 x 2 - 1 - 5 = 0 là
A. 3
B. 2
C. 6
D. 4
Cho hàm số y = f(x) liên tục trên đoạn [-2; 2] và có đồ thị là đường cong như hình vẽ bên. Tìm số nghiệm của phương trình |f(x)| = 1 trên đoạn [-2; 2].
A. 3
B. 5
C. 6
D. 4
Cho hàm số y= f(x)liên tục trên đoạn [-2;2] và có đồ thị là đường cong như hình vẽ bên.
Tìm số nghiệm của phương trình |f(x)|=1 trên đoạn [-2;2] .
A. 6
B. 4
C. 5
D. 3
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên. Số nghiệm thực phân biệt của phương trình f(f(x))=0 bằng
A. 7
B. 3
C. 5
D. 9
Cho hàm số y = f ( x ) xác định và liên tục trên R. Đồ thị của hàm số f(x) như hình bên. Số nghiệm thực âm của phương trình f ( f ( x ) ) = 0 bằng?
A. m = 2
B. m = 3
C. m = 7
D. m = 5
Cho hàm số y=f(x) liên tục và có đồ thị trên đoạn [−2;4] như hình vẽ bên. Tổng giá trị lớn nhất và nhỏ nhất của hàm số y=f(x) trên đoạn [−2;4] bằng
A. 5
B. 3
C. 0
D. -2
Cho hàm số y=f(x) xác định và liên tục trên R. Đồ thị của hàm số f(x) như hình bên. Gọi m là số nghiệm thực của phương trình f(f(x))=0 Khẳng định nào sau đây là đúng?
A. m=5
B. m=6
C. m=7
D. m=8