Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ , thỏa mãn 2 f 2 x + f 1 - 2 x = 12 x 2 . Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ bằng 1 là
A. y=2x+2
B. y=4x-6
C. y=2x-6
D. y=4x-2
Cho hàm số y=f(x) có đạo hàm liên tục trên ( 0 ; + ∞ ) thỏa mãn f ' ( x ) + f ( x ) x = 4 x 2 + 3 x và f(1)=2. Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x = 2 là x
A. y = 16x+20.
B. y = -16x+20
C. y = -16x-20
D. y = 16x-20.
Cho hàm số y = f(x) có đạo hàm liên tục trên R, thỏa mãn 2f(2x) + f(1 – 2x) = 12x2. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ bằng 1 là
A. y = 4x - 6
B. y = 2x - 6
C. y = 4x - 2
D. y = 2x + 2
Cho hàm số y=f(x) xác định, có đạo hàm trên R thỏa mãn f 2 ( - x ) = ( x 2 + 2 x + 4 ) f ( x + 2 ) và f ( x ) ≠ 0 , ∀ x ∈ R . Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=2 là
A. y=-2x+4.
B. y=2x+4.
C. y=2x.
D. y=4x+4.
Cho hàm số y= f(x) xác định và có đạo hàm trên ℝ thỏa mãn f 1 + 2 x 2 = x - f 1 - x 3 . Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ bằng 1.
A. y = - 1 7 x - 6 7
B. y = 1 7 x - 8 7
C. y = - 1 7 x + 8 7
D. y = - x + 6 7
Cho hàm số y = f ( x ) xác định. Có đạo hàm trên R thỏa mãn: f - x + 2 2 + f x + 2 3 = 10 x Viết phương trình tiếp tuyến của đồ thị hàm số y = f ( x ) tại điểm có hoành độ bằng 2
A. y=2x-5
B. y=2x-3
C. y=-2x+5
D. y=-2x+3
Cho hàm số y = f(x) có đạo hàm trên R và đồ thị (C). Tiếp tuyến của đồ thị (C) tại điểm (2;m) có phương trình là y = 4 x - 6 . Tiếp tuyến của các đồ thị hàm số y = f f x và y = f 3 x 2 - 10 tại điểm có hoành độ bằng 2 có phương trình lần lượt là y = a x + b v à y = c x + d . Tính giá trị của biểu thức S = 4 a + 3 c - 2 b + d
A. S = -26
B. S = 176
C. S = 178
D. S = 174
Cho hàm số y=f(x) có đạo hàm f '(x) trên R thỏa mãn f 2 1 + 2 x = x − f 3 1 − x . Tiếp tuyến của đồ thị hàm số f(x) tại điểm có hoành độ x=1 là
A. y = − 1 7 x − 6 7 .
B. y = 1 7 x − 8 7 .
C. y = − 1 7 x + 8 7 .
D. y = − x + 6 7 .
Cho hàm số y = f(x) xác định và liên tục trên ℝ thỏa mãn đồng thời các điều kiện sau: f(x) > 0 với ∀ x ∈ ℝ , f ' ( x ) = - e x . f 2 x với ∀ x ∈ ℝ f 0 = 1 2 . Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ x 0 = ln 2 là:
A. 2 x + 9 y - 2 ln 2 = 0
B. 2 x - 9 y - 2 ln 2 + 3 = 0
C. 2 x - 9 y + 2 ln 2 - 3 = 0
D. 2 x + 9 y - 2 ln 2 - 3 = 0