\(y=\dfrac{-3x^2-5x-5}{x-2}\)
\(I\left(a;b\right)=TCĐ\cap TCN\) là tâm đối xứng của đồ thị
\(x_I=a=\dfrac{2}{1}=1\)
\(y_I=b=\dfrac{-3}{1}=-3\)
\(\Rightarrow S=a+b=1-3=-2\)
\(y=\dfrac{-3x^2-5x-5}{x-2}\)
\(I\left(a;b\right)=TCĐ\cap TCN\) là tâm đối xứng của đồ thị
\(x_I=a=\dfrac{2}{1}=1\)
\(y_I=b=\dfrac{-3}{1}=-3\)
\(\Rightarrow S=a+b=1-3=-2\)
Cho hàm số y = 3 x - 1 x + 4
Gọi I là giao điểm của hai tiệm cận. Tính OI.
A. 3 B. 6
C. 5 D. 2
Cho hàm số
Gọi I là giao điểm của hai tiệm cận. Tính OI.
A. 3 B. 6
C. 5 D. 2
Cho hàm số y = 2 x + 1 x - 1 có đồ thị (C). Gọi M là một điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt các đường tiệm cận của (C) tại A và B. Gọi I là giao điểm của các đường tiệm cận của (C). Tính diện tích của tam giác IAB.
A.2
B.12
C.4
D.6
Cho hàm số y = 2 x + 1 x - 1 có đồ thị C. Gọi M là một điểm bất kì trên C. Tiếp tuyến của C tại M cắt các đường tiệm cận của C tại A và B . Gọi I là giao điểm của các đường tiệm cận của C . Tính diện tích của tam giác IAB.
A. 2
B . 8
C. 6
D. 4
Cho hàm số y= (2x-1)/( x+1) có đồ thị (C). Gọi M là một điểm bất kì trên (C) . Tiếp tuyến của (C) tại M cắt các đường tiệm cận của (C) tại A và B. Gọi I là giao điểm của các đường tiệm cận của (C). Tình diện tích của tam giác IAB
Cho hàm số y = 2 x - 1 2 x - 2 có đồ thị là (H). M là điểm thuộc (H) sao cho xM > 1. Tiếp tuyến của (H) tại M cắt đường tiệm cận đứng và tiệm cận ngang lần lượt tại A và B sao cho S∆OIB = 8S∆OIA (trong đó O là gốc toạ độ, I là giao của hai tiệm cận). Hỏi có tất cả bao nhiêu điểm M.
A. 2
B. 1
C. 3
D. Không có M
Cho hàm số y = x + 1 x − 1 có đồ thị (C). Gọi I là giao điểm của hai tiệm cận, M là một điểm thuộc (C). Tiếp tuyến tại M của (C) cắt hai tiệm cận tại A và B. Phát biểu nào sau đây là sai?
A. M là trung điểm của AB
B. Diện tích tam giác IAB là một số không đổi
C. Tích khoảng cách từ M đến hai tiệm cận là một số không đổi
D. Tổng khoảng cách từ M đến hai tiệm cận là một số không đổi
Gọi I là giao điểm hai đường tiệm cận của đồ thị hàm số y = 2 - x x - 1 . Tìm tọa độ của I
A. I 1 ; - 1
B. I - 1 ; - 1
C. I - 1 ; 1
D. I 1 ; 1
Cho hàm số y = x - 1 x + 2 có đồ thị (C) . Gọi I là giao điểm của hai tiệm cận của (C) . Xét tam giác đều ABI có hai đỉnh A; B thuộc (C) , đoạn thẳng AB có độ dài bằng
A. 6 .
B. 2 3 .
C. 2.
D. 2 2 .
Biết rằng đồ thị hàm số y = a x + 1 b x - 2 có đường tiệm cận đứng là x = 2 và đường tiệm cận ngang là y = 3. Tính giá trị của a + b?
A. 1.
B. 5.
C. 4.
D. 0.