Đáp án: C.
Vì nên y = 3 là tiệm cận ngang.
Vì nên x = -4 là tiệm cận đứng.
Đáp án: C.
Vì nên y = 3 là tiệm cận ngang.
Vì nên x = -4 là tiệm cận đứng.
Cho hàm số y = 3 x - 1 x + 4
Gọi I là giao điểm của hai tiệm cận. Tính OI.
A. 3 B. 6
C. 5 D. 2
Cho hàm số y = x − 1 x − 3 . Xét các mệnh đề sau:
(1) Hàm số nghịch biến trên D=R\{3}.
(2) Đồ thị hàm số có một tiệm cận đứng là x=1, tiệm cận ngang là y=3.
(3) Hàm số đã cho không có cực trị.
(4) Đồ thị hàm số nhận giao điểm I(3;1) của hai đường tiệm cận làm tâm đối xứng.
Chọn các mệnh đề đúng ?
A. 1,2,3.
B. 3,4.
C. 2,3,4.
D. 1,4.
Cho hàm số y = x + 1 x − 1 có đồ thị (C). Gọi I là giao điểm của hai tiệm cận, M là một điểm thuộc (C). Tiếp tuyến tại M của (C) cắt hai tiệm cận tại A và B. Phát biểu nào sau đây là sai?
A. M là trung điểm của AB
B. Diện tích tam giác IAB là một số không đổi
C. Tích khoảng cách từ M đến hai tiệm cận là một số không đổi
D. Tổng khoảng cách từ M đến hai tiệm cận là một số không đổi
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
b) Chứng minh rằng giao điểm I của hai tiệm cận của (C) là tâm đối xứng của (C).
c) Tìm điểm M trên đồ thị của hàm số sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ M đến tiệm cận ngang.
Cho hàm số có đồ thị (C) và I là giao điểm của hai đường tiệm cận của (C). Tiếp tuyến tại một điểm M bất kỳ của (C) cắt hai tiệm cận của (C) tại A và B. Diện tích của tam giác AIB bằng
A. 4.
B. 5
C. 6
D. 7.
Cho hàm số y = 2 x - 1 2 x - 2 có đồ thị là (H). M là điểm thuộc (H) sao cho xM > 1. Tiếp tuyến của (H) tại M cắt đường tiệm cận đứng và tiệm cận ngang lần lượt tại A và B sao cho S∆OIB = 8S∆OIA (trong đó O là gốc toạ độ, I là giao của hai tiệm cận). Hỏi có tất cả bao nhiêu điểm M.
A. 2
B. 1
C. 3
D. Không có M
Gọi I là giao điểm hai đường tiệm cận của đồ thị hàm số y = 2 - x x - 1 . Tìm tọa độ của I
A. I 1 ; - 1
B. I - 1 ; - 1
C. I - 1 ; 1
D. I 1 ; 1
Cho hàm số y = 2 x + 1 x - 3 có đồ thị C Biết điểm I là giao điểm hai đường tiệm cận của . Hỏi I thuộc đường thẳng nào trong các đường thẳng sau?
A. x - y + 1 = 0
B.x-y-1=0
C.x+y-1=0
D.x+y+1=0
Cho hàm số y = 2 x + 1 x - 1 có đồ thị (C). Gọi M là một điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt các đường tiệm cận của (C) tại A và B. Gọi I là giao điểm của các đường tiệm cận của (C). Tính diện tích của tam giác IAB.
A.2
B.12
C.4
D.6