Cho hàm số y = f(x) xác định trên ℝ , thỏa mãn f x > 0 , ∀ x ∈ ℝ và f’(x) + 2f(x) = 0. Tính f(-1), biết rằng f(1) = 1.
A. e - 2
B. e 3
C. e 4
D. 3
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Cho hàm số f(x) xác định trên R thỏa mãn f ' ( x ) = e x + e - x - 2 , f(0)=5 và f ln 1 4 = 0 . Giá trị của biểu thức S = f ( - ln 16 ) + f ( ln 4 ) bằng
Cho hàm số y=f(x) thỏa mãn f ' ( x ) + 2 x f ( x ) = e - x 2 , ∀ x ∈ R và f(1)=0 Tính giá trị f(2).
Cho hàm số y= f(x) có đạo hàm liên tục trên khoảng thỏa mãn x 2 f ' x + f x = 0 và f x ≠ 0 , ∀ x ∈ 0 ; + ∞ . Tính f(2) biết f(1) = e.
A. .
B. .
C. .
D. .
Xét các khẳng định sau:
(1) Nếu hàm số y=f(x) xác định trên R thỏa mãn f(-1).f(0)<0 thì đồ thị của hàm số y=f(x) và trục hoành có ít nhất 1 điểm chung.
(2) Nếu hàm số y=f(x) xác định trên R thỏa mãn f(-1).f(0)<0 và f(0).f(1)<0 thì đồ thị của hàm số y=f(x) và trục hoành có ít nhất 2 điểm chung.
Phát biểu nào sau đây đúng?
A. Khẳng định đúng và khẳng định sai.
B. Khẳng định sai và khẳng định đúng.
C. Khẳng định sai và khẳng định sai.
D. Khẳng định đúng và khẳng định đúng.
Cho hàm số y= f(x) xác định và liên tục trên [ a; e] và có đồ thị hàm số y= f’ (x) như hình vẽ bên. Biết rằng f(a) + f( c)) = f( b) + f( d) . Tìm giá trị lớn nhất và nhỏ nhất của hàm số y= f( x) trên [ a; e]?
A. m a x [ a , e ] f ( x ) = f ( c ) m i n [ a , e ] f ( x ) = f ( a )
B. m a x [ a , e ] f ( x ) = f ( a ) m i n [ a , e ] f ( x ) = f ( b )
C. m a x [ a , e ] f ( x ) = f ( e ) m i n [ a , e ] f ( x ) = f ( b )
D. m a x [ a , e ] f ( x ) = f ( d ) m i n [ a , e ] f ( x ) = f ( b )
Cho hàm số f ( x ) xác định trên R \ - 1 ; 1 và thỏa mãn f ' ( x ) = 1 x 2 - 1 . Biết f ( - 3 ) + f ( 3 ) = 0 và f ( - 1 2 ) + f ( 1 2 ) = 2 . Tính T = f - 2 + f 0 + f 5
Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x). Đồ thị hàm số y = f'(x) được cho bởi hình bên dưới. Biết rằng f(0) + f(1) - 2f(2) = f(4). - f(3). Giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [0;4] là
A. f(1)
B. f(0)
C. f(2)
D. f(4)