Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình
Gọi m là số nghiệm của phương trình f(f(x)) = 1 . Khẳng định nào sau đây là đúng?
A. m > 1
B. m > 0
C. m ≤ 0
D. 0 < m < 1
Cho hàm số y=f(x) và y=g(x) là hai hàm liên tục trên ℝ có đồ thị hàm số y = f '(x) là đường cong nét đậm và y = g(x) là đường cong nét mảnh như hình vẽ. Gọi ba giao điểm A,B,C của y=f '(x) và y=g'(x) trên hình vẽ lần lượt có hoành độ a.b.c. Tìm giá trị nhỏ nhất của hàm số h(x) = f(x) - g(x) trên đoạn [a;c]?
Cho hàm số y = f(x) liên tục trên ℝ \{1} và có bảng biến thiên như sau:
Đồ thị hàm số y = 1 2 f ( x ) + 3 có bao nhiêu đường tiệm cận đứng?
A. 1
B. 2
C. 0
D. 2
Cho hàm số f(x)liên tục trên đoạn [a ; b] và f(a) = b, f(b) = a, với 0 < a < b. Khi đó phương trình nào trong các phương trình sau đây luôn có nghiệm trên khoảng (a, b).
A. f x + x 2 = 0
B. f x + a = 0
C. f x - x = 0
D. f x + x = 0
Cho hàm số f x = 3 x + 2 n ế u x < - 1 x 2 - 1 n ế u x ≥ - 1
a. Vẽ đồ thị hàm số y= f(x). Từ đó nêu nhận xét vê tính liên tục của hàm số trên tập xác định của nó.
b. Khẳng định nhận xét trên bằng 1 chứng minh.
Trong mặt phẳng Oxy, cho phép biến hình f xác định như sau: Với mỗi M(x;y), ta có M'=f(M) sao cho M'(x';y') thỏa mãn x'=x;y'=ax+by, với a,b là các hằng số thực. Khi đó a và b nhận giá trị nào trong các giá trị sau đây thì f trở thành phép biến hình đồng nhất?
A. a=b=1
B. a=0;b=1
C. a=0;b=1
D. a=b=0
Cho a,b,c,d là các số thực khác 0 và hàm số
y=f(x)= asincx + bcosdx. Khẳng định nào sau đây là đúng?
A. y=f(x)= asincx + bcosdx là hàm số tuần hoàn khi và chỉ khi c d là số hữu tỉ.
B. y=f(x)= asincx + bcosdx là hàm số tuần hoàn khi và chỉ khi a d là số hữu tỉ.
C. y=f(x)= asincx + bcosdx là hàm số tuần hoàn khi và chỉ khi c b là số hữu tỉ.
D. y=f(x)= asincx + bcosdx là hàm số tuần hoàn khi và chỉ khi a x là số hữu tỉ.
Cho hàm số bậc ba y = f ( x ) có đồ thị như hình vẽ bên. Tìm tham số m để hàm số y = f ( x ) + m có ba điểm cực trị?
cho đồ thị hàm số y=f(x),y=g(x) cùng tiếp xúc với đường thẳng (d):2x-y+1=0 tại M(1,3). Lập phương trình tiếp tuyến với đồ thị hàm số h(x)=f(x)*g(x)+2021x tại điểm có hoành độ bằng 1