Đáp án A
, .
đồng biến trên .
có nhiều nhất nghiệm trên khoảng .
Mặt khác ta có:
,
khoảng (1;2)
.
Kết hợp giả thiết ta có liên tục trên và .
Từ (1) và (2) suy ra phương trình f(x) = 0 có đúng 1 nghiệm trên khoảng (1;2)
Đáp án A
, .
đồng biến trên .
có nhiều nhất nghiệm trên khoảng .
Mặt khác ta có:
,
khoảng (1;2)
.
Kết hợp giả thiết ta có liên tục trên và .
Từ (1) và (2) suy ra phương trình f(x) = 0 có đúng 1 nghiệm trên khoảng (1;2)
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình vẽ.
Gọi m là số nghiệm của phương trình f(f(x)) = 1. Khẳng định nào sau đây là đúng?
A. m = 6
B. m = 7
C. m = 5
D. m = 9
Cho hàm số y = f(x) có đạo hàm liên tục trên R và đồ thị hàm số y = f'(x) như hình vẽ. Bất phương trình f ( x ) ≤ 3 x - 2 x + m có nghiệm trên ( - ∞ ; 1 ] khi và chỉ khi
Cho hàm số y = f ( x ) xác định và liên tục trên ℝ . Đồ thị của hàm số f(x) như hình bên. Gọi m là số nghiệm thực của phương trình f(f(x))=1. Khẳng định nào sau đây là đúng?
A. m=5
B. m=6
C. m=7
D. m=9
Cho hàm số y=f(x) có đạo hàm trên ℝ . Đồ thị của hàm số y=f'(x) như hình dưới
Tìm m để bất phương trình m + x 2 + 4 ≥ 2 f x + 1 - 2 x nghiệm đúng với mọi x ∈ - 4 ; 2
A. m ≥ 2 f ( 0 ) - 1
B. m ≥ 2 f ( - 3 ) - 4
C. m ≥ 2 f ( 3 ) - 16
D. m ≥ 2 f ( 1 ) - 4
Cho hàm số y= f(x) xác định trên R và có đồ thị như hình bên. Hỏi phương trình f(|x-2|) = -1/2 có bao nhiêu nghiệm?
A. 2.
B. 0.
C. 6.
D. 4.
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên sau:
Tìm tất cả các giá trị thực của tham số m để phương trình y = f(x) - 1 có đúng hai nghiệm.
A. m = 2, m ≥ -1
B. m > 0, m = -1
C. m = -2; m > -1
D. -2 < m < -1
Cho hàm số y=f(x) xác định, liên tục trên ℝ và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình f(x)-1=m có đúng 2 nghiệm.
A. -2<m<-1
B. m>0,m=-1
C. m=-2,m>-1
D. m=-2,m ≥ -1
Cho hàm số y=f(x) xác định trên ℝ \ - 1 và liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Số nghiệm của phương trình f ( 2 x - 3 ) + 4 = 0 là:
A. 4
B. 3
C. 2
D. 1
Cho hàm số y = f(x) xác định trên R \ {1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình sau
Tìm tập hợp tất cả các giá trị của tham số thực m sao cho phương trình f(x) = m có đúng ba nghiệm thực phân biệt.
A. .
B. .
C. .
D. .
Cho hàm số y=f(x) có đạo hàm trên ℝ . Đồ thị hàm số y=f'(x) như hình vẽ bên dưới
Tìm m để bất phương trình m - x ≥ 2 f x + 2 + 4 x + 3 nghiệm đúng với mọi x ∈ - 3 ; + ∞
A. m ≥ 2 f ( 0 ) - 1
B. m ≤ 2 f ( 0 ) - 1
C. m ≤ 2 f ( - 1 )
D. m ≥ 2 f ( - 1 )