Chọn A
Số nghiệm phương trình f(x) = m là số giao điểm của hai đường y = f(x) và y = m.
Phương trình có 3 nghiệm thực phân biệt khi đường thẳng y = m cắt đồ thị y= f(x) tại ba điểm phân biệt.
Dựa vào bảng biến thiên có .
Chọn A
Số nghiệm phương trình f(x) = m là số giao điểm của hai đường y = f(x) và y = m.
Phương trình có 3 nghiệm thực phân biệt khi đường thẳng y = m cắt đồ thị y= f(x) tại ba điểm phân biệt.
Dựa vào bảng biến thiên có .
Cho hàm số y = f(x) xác định trên R\{2}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ:
Tìm tập hợp tất cả các giá trị thực của tham số m sao cho phương trình f(x) = m có 3 nghiệm thực phân biệt.
Cho hàm số y = f ( x ) xác định trên R { ± 1 } , liên tục trên mỗi khoảng xác định và có bảng biến thiên hình bên. Tìm tập hợp tất cả các giá trị thực của tham số m sao cho phương trình f ( x ) = m + 1 vô nghiệm.
A. [-3;0)
B. (1;+∞)
C. (-∞;-3)
D. (-2;+∞)
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên sau:
Tìm tất cả các giá trị thực của tham số m để phương trình y = f(x) - 1 có đúng hai nghiệm.
A. m = 2, m ≥ -1
B. m > 0, m = -1
C. m = -2; m > -1
D. -2 < m < -1
Cho hàm số y=f(x) xác định, liên tục trên ℝ và có bảng biến thiên như sau:
Tìm tất cả các giá trị thực của tham số m để phương trình f(x)-1=m có đúng 2 nghiệm.
A. -2<m<-1
B. m>0,m=-1
C. m=-2,m>-1
D. m=-2,m ≥ -1
Cho hàm số y=f(x) xác định, liên tục trên ℝ / 1 và có bảng biến thiên như hình dưới đây
Tập hợp S tất cả các giá trị của m đề phương trình f(x)=m có đúng ba nghiệm thực là
A. S=(-1;1)
B. S= - 1 ; 1
C. S= - 1 ; 1
D. S= 1
Cho hàm số y=f(x) xác định, liên tục trên ℝ \ 1 và có bảng biến thiên như hình dưới đây
Tập hợp S tất cả các giá trị của m để phương trình f(x) = m có đúng ba nghiệm thực là :
A. S = {1}
B. S = (-1;1)
C.S = [-1;1]
D. S = {-1;1}
Cho hàm số y = f x xác định trên ℝ \ - 1 ; 1 ,liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau.
Tìm tập hợp tất cả các giá trị của tham số m sao cho phương trình có đúng 1 nghiệm.
f x = m
Cho hàm số y=f(x) xác định trên ℝ \ { 1 } , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ.
Số giá trị nguyên của tham số m để phương trình f(x) = m có 3 nghiệm phân biệt là
A. 1
B. 0
C. 3
D. 2
Cho hàm số y=f(x) xác định và liên tục trên mỗi nửa khoảng ( - ∞ ; - 2 ] v à [ 2 ; + ∞ ) , có bảng biến thiên như hình vẽ.
Tập hợp các giá trị m để phương trình f(x) = m có hai nghiệm phân biệt là
A. [ 22 ; + ∞ )
B. ( 7 4 ; 2 ] ∪ [ 22 ; + ∞ )
C. [ 7 4 ; 2 ] ∪ [ 22 ; + ∞ )
D. ( 7 4 ; + ∞ )