Đáp án B
Phương trình đường thẳng có hệ số góc k, đi qua M(m;2) là y - 1 = k(x - m) (d)
Vì (d) tiếp xúc với (C) khi và chỉ khi k = f ' x k x - m + 2 = - x 3 + 6 x 2 + 2 ⇔ k = - 3 x 2 + 12 x k x - m = - x 3 + 6 x 2
⇔ - 3 x 2 + 12 x x - m + x 3 - 6 x 2 = 0 ⇔ [ x = 0 - 3 x + 12 x x - m + x 2 - 6 x = 0
⇔ [ x = 0 - 3 x 2 + 3 m x + 12 x - 12 m + x 2 - 6 x = 0 ⇔ [ x = 0 2 x 2 - 3 m + 2 x + 12 m = 0 *
Để từ M kẻ được 2 tiếp tuyến tới đồ thị (C) khi và chỉ khi:
TH1. Phương trình (*) có nghiệm kép khác 0 ⇔ ∆ = 9 m + 2 2 - 96 m = 0 ⇔ [ m = 6 m = 2 3
TH2. Phương trình (*) có nghiệm kép bằng 0, nghiệm còn lại khác 0 ⇔ 12 m = 0 ∆ > 0 ⇔ m = 0
Vậy m = 0 ; 2 3 ; 6 là các giá trị cần tìm → ∑ m = 0 + 2 3 + 6 = 20 3 .