Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hàm số y = f x = - x 3 + 6 x 2 + 2  có đồ thị (C) và điểm M(m;2). Gọi S là tập hợp các giá trị thực của m để qua M kẻ được đúng hai tiếp tuyến với đồ thị (C). Tổng các phần tử của S là:

A.  12 3

B.  20 3

C.  19 3

D.  23 3

Cao Minh Tâm
24 tháng 12 2019 lúc 14:36

Đáp án B

Phương trình đường thẳng có hệ số góc k, đi qua M(m;2) là y - 1 = k(x - m) (d) 

Vì (d) tiếp xúc với (C) khi và chỉ khi  k = f ' x k x - m + 2 = - x 3 + 6 x 2 + 2 ⇔ k = - 3 x 2 + 12 x k x - m = - x 3 + 6 x 2

⇔ - 3 x 2 + 12 x x - m + x 3 - 6 x 2 = 0 ⇔ [ x = 0 - 3 x + 12 x x - m + x 2 - 6 x = 0

⇔ [ x = 0 - 3 x 2 + 3 m x + 12 x - 12 m + x 2 - 6 x = 0 ⇔ [ x = 0 2 x 2 - 3 m + 2 x + 12 m = 0 *  

Để từ M kẻ được 2 tiếp tuyến tới đồ thị (C) khi và chỉ khi:

TH1. Phương trình (*) có nghiệm kép khác 0 ⇔ ∆ = 9 m + 2 2 - 96 m = 0 ⇔ [ m = 6 m = 2 3  

TH2. Phương trình (*) có nghiệm kép bằng 0, nghiệm còn lại khác 0 ⇔ 12 m = 0 ∆ > 0 ⇔ m = 0  

Vậy m = 0 ; 2 3 ; 6  là các giá trị cần tìm → ∑ m = 0 + 2 3 + 6 = 20 3  .


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết