Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ thỏa mãn f'(x) -xf(x) = 0, f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e .
B. 1 e .
C. e .
D. e.
Cho hàm số f(x) liên tục trên (0;+ ∞ ) thỏa mãn 3x.f(x) - x 2 f ' ( x ) = 2 f 2 ( x ) , với f(x) ≠ 0, ∀ x ∈ (0;+ ∞ ) và f(1) = 1 3 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [1;2]. Tính M + m.
A. 9 10
B. 21 10
C. 7 3
D. 5 3
Cho hàm số f(x) liên tục trên R thỏa mãn điều kiện: f ( 0 ) = 2 3 , f ( x ) > 0 , ∀ x ∈ ℝ và f ( x ) . f ' ( x ) = ( 2 x + 1 ) 1 + f 2 ( x ) , ∀ x ∈ ℝ . Khi đó giá trị f(1) bằng:
Cho f(x) là hàm số liên tục trên R thỏa mãn f(x) + f'(x) = x và f(0) = 1. Tính f(1).
A. 2/e
B. 1 / e
C. e
D. e / 2
Cho hàm số y=f(x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;3] thoả mãn f(0)=3, f(3)=8 và ∫ 0 3 ( f ' ( x ) ) 2 f ( x ) + 1 d x = 4 3 Giá trị của f(2) bằng
A. 64 9
B. 55 9
C. 16 3
D. 19 3
Cho hàm số f(x) liên tục trên ℝ và F(x) là nguyên hàm của f(x), biết ∫ 0 9 f x d x = 9 và F(0) = 3. Giá trị của F(9) bằng
A. F(9) = 6
B. F(9) = 12
C. F(9) = –6
D. F(9) = –12
Giả sử hàm số y=f(x) liên tục, nhận giá trị dương trên 0 ; + ∞ và thỏa mãn f(1)=1, f ( x ) = f ' ( x ) 3 x + 1 , với mọi x>0. Mệnh đề nào sau đây đúng?
Cho số dương a và hàm số y = f(x) liên tục trên R thỏa mãn f(x) + f(-x) = a. Giá trị của biểu thức ∫ - a a f ( x ) d x bằng
A. 2 a 2
B. a 2
C. a
D. 2 a
Cho hàm số y=f(x) liên tục trên ( 0 ; + ∞ ) và thỏa mãn 2xf'(x)+f(x)= 3 x 2 x biết f(1)= 1 2 . Gía trị f(2) bằng