Cho hàm số y=f(x). Đồ thị hàm số y=f’(x) như hình vẽ
Cho bất phương trình 3 . f x ≥ x 3 - 3 x + m , (m là tham số thực). Điều kiện cần và đủ để bất phương trình 3 . f x ≥ x 3 - 3 x + m đúng với mọi x thuộc đoạn - 3 ; 3 là
A. m ≥ 3 f - 3
B. m ≤ 3 f 3
C. m ≥ 3 f 1
D. m ≤ 3 f 0
Cho hàm số y=f(x) có đạo hàm liên tục trên , đồ thị hàm số y=f’(x) như hình vẽ bên dưới. Cho bất phương trình f e x + 2 3 e 3 x - e x - m ≥ 0 ; với m là tham số thực. Tìm điều kiện cần và đủ để bất phương trình f e x + 2 3 e 3 x - e x - m ≥ 0 đúng với mọi x ∈ - 2 ; 2
A. m ≤ f e + 2 3 e 3 - e
B. m ≤ f 1 - 1 3
C. m ≤ f 1 e + 2 3 e - 3 - e - 1
D. m ≤ f e 2 + 2 3 e 3 2 - e 2
Cho hàm số y=f(x)có đạo hàm liên tục trên ℝ , đồ thị hàm số y=f’(x) như hình vẽ bên dưới.
Cho bất phương trình f 2 x - 1 3 . 2 3 x + 2 x + 2 3 + m ≥ 0 với m là tham số thực. Tìm điều kiện cần và đủ để bất phương trình f 2 x - 1 3 . 2 3 x + 2 x + 2 3 + m ≥ 0 đúng với mọi x ∈ - 2 ; 2
A. m ≥ - f 2
B. m ≥ - f 1 - 4 3
C. m ≤ - f 4 + 50 3
D. m ≤ - f 1 2 - 9 8
Cho hàm số y=f(x). Đồ thị hàm số y=f’(x) như hình vẽ. Đặt g ( x ) = 3 f ( x ) - x 3 + 3 x - m , với m là tham số thực. Điều kiện cần và đủ để bất phương trình g(x)≥0 nghiệm đúng với ∀ x ∈ - 3 ; 3 là
A. m < 3 f 3
B. m > 3 f 3
C. m ≤ 3 f 3
D. m ≥ 3 f 3
Cho hàm số đa thức bậc ba y=f(x) có đồ thị của các hàm số y=f(x), y=f '(x)như hình vẽ bên.Gọi S là tập hợp tất cả các giá trị nguyên của m để phương trình f(f(x)-m)+2f(x)=3(x+m) có đúng 3 nghiệm thực .Tổng các phần tử của S bằng
A. 0
B. -6
C. -7
D. -5
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình. Tập hợp tất cả các giá trị thực tham số m để phương trình f(cosx) = m có 3 nghiệm phân biệt thuộc khoảng ( 0 ; 3 π 2 ] là
A. [-2;2]
B. (0;2)
C. (-2;2)
D. (0;2]
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình bên. Có bao nhiêu số thực m để bất phương trình m x + m 2 10 - x + 3 m + 1 . f ( x ) ≥ 0 nghiệm đúng với mọi x ∈ - 2 ; 3
A. 1
B. 3
C. 0
D. 2
Cho hàm số y = f (x) liên tục trên R có đồ thị như hình vẽ.
Biết trên ( - ∞ ; - 3 ) ∪ ( 2 ; + ∞ ) t h ì f ' ( x ) > 0 . Số nghiệm nguyên thuộc (-10; 10) của bất phương trình [ f ( x ) + x - 1 ] ( x 2 - x - 6 ) > 0 là
A. 9
B. 10
C. 8
D. 7
Cho hàm số y = f(x) liên tục trên R, có đồ thị như hình vẽ. Các giá trị của tham số m để phương trình 4 m 3 + m 2 f 2 ( x ) + 5 = f 2 ( x ) + 3 có ba nghiệm phân biệt là
A. m = ± 37 2
B. m = 3 2
C. m = - 37 2
D. m = 37 2
Cho hai hàm số đa thức bậc bốn y = f(x) và y = g(x) có đồ thị như hình vẽ bên dưới, trong đó đường đậm hơn là đồ thị hàm số y = f(x). Biết rằng hai đồ thị này tiếp xúc với nhau tại điểm có hoành độ là -3 và cắt nhau tại hai điểm nữa có hoành độ lần lượt là -1 và 3. Tìm tập hợp tất cả các giá trị thực của tham số m để bất phương trình f x ≥ g x + m nghiệm đúng với mọi x ∈ - 3 ; 3 .
A. - ∞ ; 12 - 8 3 9 .
B. 12 - 10 3 9 ; + ∞ .
C. - ∞ ; 12 - 10 3 9 .
D. 12 - 8 3 9 ; + ∞ .