Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d có đồ thị như hình bên. Tất cả các giá trị của m để phương trình f ( x ) - m + 1 = 0 có 4 nghiệm phân biệt là
A. 0 < m < 1
B. 1 < m < 2
C. 2 < m < 3
D. m = 2
Cho hàm số y = f ( x ) = a x 4 + b x 2 + c ( a ≠ 0 ) có đồ thị như hình bên. Tất cả các giá trị của m để phương trình f x + m + 1 = 0 có 7 nghiệm phân biệt là:
A. m = -2
B. m = -1
C. m = 2
D. m = 0
Cho hàm số y = f(x) = a x + b c x + d có đồ thị như hình vẽ bên. Tất cả các giá trị của m để phương trình |f(x)| = m có 2 nghiệm phân biệt là:
A . m ≥ 2 v à m ≤ 1
B . 0 < m < 1 v à m > 1
C . m > 2 v à m < 1
D . 0 < m < 1
Cho hàm số f ( x ) = a x + b c x + d a , b , c , d ∈ R có đồ thị như hình vẽ bên. Tất cả các giá trị của m để phương trình |f(x)|=m có hai nghiệm phân biệt là
A. m ≥ 2 v à m ≤ 1
B. 0 < m < 1
C. m > 2 và m < 1
D. 0 < m < 1 và m > 1
Cho hàm số y=f(x) có đồ thị như hình bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m+2 có bốn nghiệm phân biệt
A. -4<m<-3
B. -4≤m≤-3
C. -6≤m≤-5
D. -6<m<-5
Cho hàm số y = f ( x ) = a x + b c x + d có đồ thị như hình bên.
Tất cả các giá trị thực của tham số m để phương trình |f(x)|=m-1 có duy nhất một nghiệm là
A. m=0
B. m=2
C. m=2 hoặc m=1
D. m=1
Cho hàm số y = f(x) liên tục trên R có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của m để phương trình |f(x−2)+1| − m = 0 có 8 nghiệm phân biệt.
A. 0
B. 2.
C. 1.
D. 2.
Cho đồ thị hàm số y=f (x) như hình vẽ. Tìm tất cả các giá trị thực m để phương trình f(x) +1= m có ba nghiệm phân biệt
A. 0 < m < 5
B. 1 < m < 5
C. - 1 < m < 4
D. 0 < m < 4
Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Xác định tất cả các giá trị thực của tham số m để phương trình |f(x)| = m có 6 nghiệm thực phân biệt.
A. 0 < m < 4
B. -1 < m < -2
C. 1 < m < 2
D. -1 < m < 2