Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số f x = 1 1 + sinx
a) F(x) = 1 - cos x 2 + π 4
b) G(x) = 2 tan x 2
c) H(x) = ln(1 + sinx)
d) K(x) = 2 1 - 1 1 + tan x 2
Cho hàm số .
LG a
Xác định điểm thuộc đồ thị của hàm số đã cho biết rằng hoành độ của điểm là nghiệm của phương trình .
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Cho hàm số y = f(x) có đạo hàm f’(x) liên tục trên đoạn [0; 1] thỏa mãn f(1) = 1 và I = ∫ 0 1 f x d x = 2 . Tính tích phân I = ∫ 0 1 f ' x d x
A. I = -1.
B. I = 1.
C. I = 2.
D. I = -2.
Cho hàm số f(x) thỏa mãn ∫ 0 1 ( x + 1 ) f ' ( x ) d x = 10 và 2f(1) – f(0) = 2. Tính I = ∫ 0 1 f ( x ) d x
A. I = -12.
B. I = 8.
C. I = 12.
D. I = -8.
Cho F(x) là một nguyên hàm của hàm số f ( x ) = 1 1 + sin 2 x với x ∈ R { - π 4 + k π , k ∈ } . Biết F(0)=1,F( π )=0, tính giá trị biểu thức P = F ( - π 12 ) - F ( 11 π 12 )
Hàm số y = f(x) có đạo hàm trên khoảng K = ( x 0 - h; x 0 + h). Nếu f’( x 0 ) = 0 và f'( x 0 ) > 0 thì x 0 là:
A. Điểm cực tiểu của hàm số.
B. Giá trị cực đại của hàm số.
C. Điểm cực đại của hàm số.
D. Giá trị cực tiểu của hàm số.
Cho hàm số f ( x ) = ( x + 1 ) 2 k h i x > 1 x 2 + 1 k h i x < 1 k 2 k h i x = 1 . Tìm k để f(x) gián đoạn tại x=1.
A. .
B. .
C. .
D. .
Cho hàm số f(x) thỏa mãn ∫ 0 1 ( x + 1 ) f ' ( x ) d x = 10 và 2f(1) - f(0) = 2 .Tính tích phân I = ∫ 0 1 f ( x ) d x .
A. I=-12.
B. I=8.
C. I=12.
D. I=-8
Hàm số y= f( x) liên tục trên khoảng K, biết đồ thị của hàm số y=f ’(x) trên K như hình vẽ.
Tìm số cực trị của hàm số g(x) = f(x+ 1) trên K?
A.0.
B. 1
C. 2.
D. 3.