Đáp án C
Phương pháp:
Tách I = ∫ − π 2 1 f x d x = ∫ − π 2 0 f x d x + ∫ 0 1 f x d x
Cách giải:
I = ∫ − π 2 1 f x d x = ∫ − π 2 0 cos x d x + ∫ 0 1 1 − 2 x d x = sin x | + − π 2 0 x − x 2 = 0 1 1 + 0 = 1
Đáp án C
Phương pháp:
Tách I = ∫ − π 2 1 f x d x = ∫ − π 2 0 f x d x + ∫ 0 1 f x d x
Cách giải:
I = ∫ − π 2 1 f x d x = ∫ − π 2 0 cos x d x + ∫ 0 1 1 − 2 x d x = sin x | + − π 2 0 x − x 2 = 0 1 1 + 0 = 1
Cho hàm số y=f(x) liên tục trên đoạn [0;π/3].Biết f’(x).cosx+f(x).sinx=1, x ϵ [0;π/3] và f(0)=1. Tính tích phân I = ∫ 0 π 3 f x d x
A. 1/2 + π/3
B. 3 + 1 2
C. 3 - 1 2
D. 1/2
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a – x) = 1, ∀ x ∈ [0;a]. Tính tích phân I = ∫ 0 a 1 1 + f ( x ) d x
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1)=0 và ∫ 0 1 [ f ' ( x ) ] 2 d x = ∫ 0 1 ( x + 1 ) e x f ( x ) d x = e 2 - 1 4 Tính tích phân I= I = ∫ 0 1 f ( x ) d x
A. I=2-e
B. I=e-2
C. I=e/2
D. I = e - 1 2
Cho hàm số y = f (x) có đạo hàm trên R. Xét tính đúng sai của các mệnh đề sau.
(I): Nếu f’(x) > 0 trên khoảng (x0–h;x0) và f’(x) < 0 trên khoảng (x0;x0+h) (h>0) thì hàm số đạt cực đại tại điểm x0
(II): Nếu hàm số đạt cực đại tại điểm x0 thì tồn tại các khoảng (x0–h;x0), (x0;x0+h) (h>0) sao cho f’(x) > 0 trên khoảng (x0–h;x0) và f’(x) < 0 trên khoảng (x0;x0+h)
A. Cả (I) và (II) cùng sai
B. Mệnh đề (I) đúng, mệnh đề (II) sai
C. Mệnh đề (I) sai, mệnh đề (II) đúng
D. Cả (I) và (II) cùng đúng
Cho hàm số f(x) có đạo hàm f'(x) thỏa mãn các đẳng thức ∫ 0 1 ( 2 x - 1 ) f ' ( x ) d x = 10 , f ( 1 ) + f ( 8 ) = 0 . Tính I = ∫ 0 1 f ( x ) d x .
A. I = 2.
B. I = 1.
C. I = -1.
D. I = -2.
Biết F(x) là một số nguyên hàm của hàm số f(x) trên đoạn [-1;0], F - 1 = - 1 ; F 0 = 0 và ∫ - 1 0 2 3 x F ( x ) dx = - 1 . Tính I= ∫ - 1 0 2 3 x f ( x ) dx .
A. 1 8 - 3 ln 2
B. 1 8 + ln 2
C. 1 8 + 3 ln 2
D. - 1 8 + 3 ln 2
Cho hàm số có f đạo hàm trên khoảng I. Xét các mệnh đề sau:
(I). Nếu , thì hàm f '(x) < 0 "x ∈ I số nghịch biến trên I
(II). Nếu , f '(x) ≤ 0 "x ∈ I (dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên I ) thì hàm số nghịch biến trên I
(III). Nếu , thì hàm f '( x) ≤ 0 "x ∈ I số nghịch biến trên khoảng I
(IV). Nếu , f '(x) ≤ 0 "x ∈ I và f '(x) = 0 tại vô số điểm trên thì hàm I số không f thể nghịch biến trên khoảng I
Trong các mệnh đề trên. Mệnh đề nào đúng, mệnh đề nào sai?
A. I, II và IV đúng, còn III sai.
B. I, II, III và IV đúng.
C. I và II đúng, còn III và IV sai.
D. I, II và III đúng, còn IV sai.
Cho hàm số y = f (x) có đạo hàm trên khoảng I. Xét các mệnh đề sau
(I). Nếu f’(x) ≥ 0, ∀ x ∈ I (dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên I ) thì hàm số f đồng biến trên I.
(II). Nếu f’(x) ≤ 0, ∀ x ∈ I (dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên I ) thì hàm số f nghịch biến trên I.
(III). Nếu f’(x) ≤ 0, ∀ x ∈ I thì hàm số f nghịch biến trên khoảng I.
(IV). Nếu f’(x) ≤ 0, ∀ x ∈ I và f’(x) = 0 tại vô số điểm trên I thì hàm số f không thể nghịch biến trên khoảng I.
Trong các mệnh đề trên, mệnh đề nào đúng, mệnh đề nào sai?
A. I và II đúng, còn III và IV sai
B. I, II và III đúng, còn IV sai
C. I, II và IV đúng, còn III sai
D. Cả I, II, III và IV đúng
Cho hàm số f(x) thỏa mãn ∫ 0 π f ' ( x ) d x = 1 , f ( 0 ) = π . Tính f ( π )
A. f ( π ) = 1 - π
B. f ( π ) = π - 1
C. f π = π + 1
D. f π = - π - 1
Cho các số thực a, b khác 0. Xét hàm số f ( x ) = a ( x + 1 ) 3 + b x e x với mọi x khác -1. Biết f'(0)=-22 và ∫ 0 1 f ( x ) d x = 5 . Tính a 2 + b 2 .
A. 42
B. 72
C. 68
D. 10