Tham khảo:
https://hoc24.vn/cau-hoi/cho-hai-so-xy-thoa-man-x-y-cmr-x2-y2-le-x4-y4.628714996213
Tham khảo:
https://hoc24.vn/cau-hoi/cho-hai-so-xy-thoa-man-x-y-cmr-x2-y2-le-x4-y4.628714996213
Tìm x,y biết:
a) x^2 - 12x + 35 bé hơn hoặc =0
Cho x+y+xy=15. Tìm GTNN của M= 4 ( x^2+y^4 )
Cho các số thực a,b,c thỏa mãn điều kiện a^2+b^2+c^2=1. CMR: -1/2 bé hơn hoặc bằng ab+ac+bc bé hơn hoặc bằng 1
Cho x>0,y>0 thỏa mãn x+y bé hơn hoặc bằng 1
CMR: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Tìm các số nguyên x, y thỏa mãn:
x2 + y2 + z2 nhỏ hơn hoặc bằng xy + 3y + 2z - 4
cho x, y lớn hơn hoặc bằng 0 thỏa mãn x2+ y2nhỏ hơn hoặc bằng 2 tìm GTNN của biểu thức M= 1/(1+x) +1/(1+y)
cho 2 số thực `x,y` thỏa mãn `x>0,y>2,x`\(\ne\)`2y`. CMR: \(\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right)\left(2x^2+y+2\right):\dfrac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}=\dfrac{x+1}{2y-x}\)
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
Cho hai số dương x, y thỏa mãn: x + y = 2
CMR: x2y2(x2 + y2) ≤ 2
cho x;y là các số thwucj dương phân biệt thỏa mãn ;
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
CMR : 5y=4x
cho x,y>0 thỏa mãn x^2+y^3>=x^3+y^4. cmr x^3+y^3=<2