\(P=\dfrac{\left(x-2\right)^2+\left(y-1\right)^2+x+y+4}{x+y+2023}\ge\dfrac{x+y+4}{x+y+2023}=1-\dfrac{2019}{x+y+2023}\)
\(x+y\ge3\Rightarrow x+y+2023\ge2026\)
\(\Rightarrow\dfrac{2019}{x+y+2023}\le\dfrac{2019}{2026}\)
\(\Rightarrow1-\dfrac{2019}{x+y+2023}\ge1-\dfrac{2019}{2026}=\dfrac{7}{2026}\)
\(P_{min}=\dfrac{7}{2026}\) khi \(\left(x;y\right)=\left(2;1\right)\)