hàm số f ( x ) = ln 1 - 1 x 2 . Biết rằng f ( 2 ) + F ( 3 ) + . . . + f ( 2018 ) = ln a - ln b + ln c - ln d với a, b, c, d là các số nguyên dương, trong đó a, c, d là các số nguyên tố và a<b<c<d. Tính P=a+b+c+d
A. 1986
B. 1698
C. 1689
D. 1968
Cho a,b là các số thực dương thỏa mãn ∫ a b f ( x ) d x = 1 . Tích phân I = ∫ ln x ln b e x . f e x có giá trị bằng bao nhiêu?
A. I = 0.
B. I = 1.
C. I = |a-b|.
D. I = e.
Gọi x và y là các số thực dương thỏa mãn điều kiện log 9 x = log 6 y = log 4 ( x + y ) và x y = - a + b 2 với a, b là hai số nguyên dương. Tính T = a + b
A. T=6
B. T=4
C. T=11
D. T=8
Gọi x, y là các số thực dương thỏa mãn log 9 x = log 6 y = log 4 ( x + y ) và x y = - a + b 2 với a, b là hai số nguyên dương. Tính tổng T = a+b
A. T = 6
B. T = 4
C. T = 11
D. T = 8
Cho các số thực dương a,b, x thoả mãn log 1 / 2 x = 2 3 log 1 / 2 a - 1 5 log 1 / 2 b . Mệnh đề nào dưới đây đúng ?
A.
B.
C.
D.
Giả sử a, b là các số thực sao cho x3 + y3 = a.103x + b.102x đúng với mọi số thực dương x, y, z thỏa mãn log (x + y) = z và log(x2 + y2) = z + 1. Giá trị của a+b bằng:
A. - 31 2
B. - 25 2
C. 31 2
D. 29 2
Cho hàm số f ( x ) = a x 4 + b x 2 + c với a>0, c>2018 và a+b+c<2018. Số điểm cực trị của hàm số y = f ( x ) - 2018 là
A. 1
B. 3
C. 5
D. 7
Biết a b (trong đó a b là phân số tối giản, a , b ∈ N * ) là giá trị thực của tham số m để hàm số y = 2 x 3 - 3 m x 2 - 6 ( 3 m 2 - 1 ) x + 2018 có hai điểm cực trị x1;x2 thỏa mãn x 1 x 2 + 2 ( x 1 + x 2 ) = 1 . Tính P=a+2b.
Cho hàm số y= f( x) đạo hàm f’ (x) = -x2- 1. Với các số thực dương a, b thỏa mãn a< b. Giá trị nhỏ nhất của hàm số f( x) trên đoạn [ a; b] bằng
A. f(a)
B. f a b
C. f( b)
D. f a + b 2