Cho hàm số f x = a x 3 + b x 2 + c x + d với a , b , c , d ∈ ℝ ; a > 0 và d > 2018 a + b + c + d − 2018 < 0 . Số cực trị của hàm số y = f x − 2018 bằng
A. 3
B. 2
C. 1
D. 5
hàm số f ( x ) = ln 1 - 1 x 2 . Biết rằng f ( 2 ) + F ( 3 ) + . . . + f ( 2018 ) = ln a - ln b + ln c - ln d với a, b, c, d là các số nguyên dương, trong đó a, c, d là các số nguyên tố và a<b<c<d. Tính P=a+b+c+d
A. 1986
B. 1698
C. 1689
D. 1968
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d ( v ớ i a , b , c , d ∈ ℝ , a > 0 ) . Biết đồ thị hàm số y=f(x) này có điểm cực đại A (0;1) và điểm cực tiểu B(2;-3). Hỏi tập nghiệm của phương trình f 3 ( x ) + f ( x ) - 2 f ( x ) 3 = 0 có bao nhiêu phần tử?
A. 2019
B. 2018
C. 9
D. 8
Cho hàm số f ( x ) = a x 4 + b x 2 + c v ớ i a > 0 , c > 2017 , a + b + c < 2017 . Số cực trị của hàm số y = | f ( x ) - 2017 | là
A. 1
B. 5
C. 3
D. 7
Cho hàm số y = f ( x ) có đạo hàm trên R là f ' ( x ) = ( x - 2018 ) ( x - 2019 ) ( x - 2020 ) 4 . Hàm số đã cho có bao nhiêu điểm cực trị?
A. 2
B. 1
C. 4
D. 3
Cho hàm số f(x) có f ' ( x ) = x 2017 ( x - 1 ) 2018 ( x + 1 ) 2018 , ∀ x ∈ ℝ . Hỏi hàm số đã cho có bao nhiêu điểm cực trị?
A. 0
B. 1
C. 2
D. 3
Cho hàm số f x = x 3 + a x 2 + b x + c thỏa mãn c > 2019 , a + b + c - 2018 < 0 . Số điểm cực trị của hàm số y = f x - 2019 là
Cho hàm số f ( x ) = a x 4 + b x 2 - 1 ( a , b ∈ ℝ ) . Đồ thị của hàm số y=f(x) như hình vẽ bên. Số nghiệm thực của phương trình 2018.f(x) + 2019 = 0 là:
A. 4
B. 0
C. 3
D. 2
Cho hàm số f(x) xác định trên R và có đồ thị của hàm số y= f’(x) như hình vẽ bên.
Hàm số y= f( x+ 2018) có mấy điểm cực trị?
A. 1
B. 2
C. 3
D. 4