Cho hàm số f(x) có đạo hàm trên ℝ thỏa mãn f’(x) – 2018f(x) = 2018.x2017.e2018x với mọi x ∈ ℝ và f(0) = 2018. Tính giá trị f(1).
A. f(1) = 2019e2018.
B. f(1) = 2018e-2018.
C. f(1) = 2018e2018.
D. f(1) = 2017e2018.
Cho hàm số y = f ( x ) có đạo hàm trên R là f ' ( x ) = ( x - 2018 ) ( x - 2019 ) ( x - 2020 ) 4 . Hàm số đã cho có bao nhiêu điểm cực trị?
A. 2
B. 1
C. 4
D. 3
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = ( x 2 - 1 ) ( x + 2 ) 3 , ∀ x ∈ ℝ . Hàm số có bao nhiêu điểm cực trị?
A. 3
B. 2
C. 5
D. 1
Cho hàm số f ( x ) có đạo hàm f ' ( x ) = x ( x - 1 ) ( x + 2 ) 3 , ∀ x ∈ ℝ . Số điểm cực trị của hàm số đã cho là:
A. 2
B. 3
C. 5
D. 1
Cho hàm số f ( x ) có đạo hàm f ' ( x ) = ( x + 1 ) 2 ( x - 2 ) 3 ( 2 x + 3 ) , ∀ x ∈ ℝ . Số điểm cực trị của hàm số đã cho là
A. 2
B. 6
C. 1
D. 3
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d ( v ớ i a , b , c , d ∈ ℝ , a > 0 ) . Biết đồ thị hàm số y=f(x) này có điểm cực đại A (0;1) và điểm cực tiểu B(2;-3). Hỏi tập nghiệm của phương trình f 3 ( x ) + f ( x ) - 2 f ( x ) 3 = 0 có bao nhiêu phần tử?
A. 2019
B. 2018
C. 9
D. 8
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = x ( x - 1 ) ( x + 2 ) 3 ( x - 2 ) 2 , ∀ x ∈ ℝ . Số điểm cực trị của hàm số đã cho là
A. 4
B. 7
C. 3
D. 2
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = x ( x + 1 ) ( 1 - 2 x ) 3 , ∀ x ∈ ℝ . Số điểm cực trị của hàm số đã cho là
A. 3
B. 1
C. 5
D. 2
Cho hàm số f(x) có đạo hàm f ' ( x ) = x 2 ( x - 1 ) 3 ( x - 2 ) 4 ( x - 3 ) 5 , ∀ x ∈ ℝ . Số điểm cực trị của hàm số đã cho là
A. 1
B. 4
C. 2
D. 3