Cho hai số phức z = 1 + a i ( a ∈ R ) , z ' = 1 + i Tìm điều kiện của a để zz’ là một số thuần ảo
Cho hai số phức z = a + bi và z’ = a’ + b’i . Tìm điều kiện giữa a; b; a’; b’ để z + z’ là một số thuần ảo.
Cho số phức z = a + bi với a , b ∈ R . Nếu z là số thuần ảo thì đâu là khẳng định đúng?
A. a = 0
B. a = 0 và b ≠ 0
C. b = 0
D. b = 0 và a ≠ 0
Tập hợp các điểm biểu diễn số phức z sao cho u = z + 2 + 3 i z - i là một số thuần ảo.
Là một đường tròn tâm I(a;b). Tính tổng a + b
A. 2
B. 1
C. -2
D. 3
Cho z là một số phức tùy ý. Mệnh đề nào sau đây là sai?
A. z ∈ R ⇔ z = z
B. z là thuần ảo ⇔ z + z = 0
C. z z = - z z ∈ R z ≠ 0
D. z 3 + z 3 ∈ R
Cho z ∈ C. Mệnh đề nào sau đây đúng?
A. Nếu z ∈ C \ R thì z là một số thuần ảo.
B. Nếu z là một số thuần ảo thì z ∈ C \ R.
C. Nếu z là một số thuần ảo thì z = |z|.
D. Nếu z là một số thuần ảo thì z = z
Cho z ∈ C. Mệnh đề nào sau đây đúng?
A. Nếu z ∈ C \ R thì z là một số thuần ảo.
B. Nếu z là một số thuần ảo thì z ∈ C \ R.
C. Nếu z là một số thuần ảo thì z = |z|.
D. Nếu z là một số thuần ảo thì z = z−.
Tìm số phức z thỏa mãn hai điều kiện:| z + 1 - 2i| = | z ¯ + 3 + 4i| và z - 2 i z ¯ + i là một số thuần ảo.
Số phức z = a + bi(a, b thuộc R) là số thuần ảo khi và chỉ khi
A. a = 0; b ≠ 0
B. a ≠ 0; b = 0
C. a = 0
D. b = 0