Cho số phức z = a + bi . Tìm điều kiện của a và b để số phức z 2 = ( a + bi ) 2 là số thuần ảo
A . a = 2 b .
B . a = 3 b .
C . a = ± b .
D . a ≠ 0 , b ≠ 0 .
Cho hai số phức z = - 2 + 5 i , z ’ = a + b i a , b ∈ R . Xác định a,b để z + z’ là một số thuần ảo
A. a = 2 , b = - 5
B. a ≠ 2 , b = - 5
C. a ≠ 2 , b ≠ - 5
D. a = 2 , b ≠ - 5
Cho số phức z = a + b i ( a , b ∈ R ) . Xét các mệnh đề sau :
(1) z là số thực khi và chỉ khi a ≠ 0 , b = 0
(2) z là số thuần ảo khi và chỉ khi a = 0 , b ≠ 0
(3) z vừa là số thực vừa là số thuần ảo khi và chỉ khi a = 0, b = 0
Số mệnh đề đúng là ?
A. 2
B. 0
C. 3
D. 1
Cho hai số phức:
z = a + b i , z ' = a ' + b ' i ( a , b , a ' , b ' ∈ ℝ ) .
Tìm phần ảo của số phức z z ' .
A. ( a b ' + a ' b ) i
B. a b ' + a ' b
C. a b ' − a ' b
D. a a ' − b b '
Xét các số phức z = a + bi, (a,b ∈ R) thỏa mãn đồng thời hai điều kiện z = z ¯ + 4 - 3 i và z + 1 - i + z - 2 + 3 i đạt giá trị nhỏ nhất. Giá trị P = a + 2b là:
A. P = - 61 10
B. P = - 252 50
C. P = - 41 5
D. P = - 18 5
Xét số phức z = a + b i a , b ∈ R thỏa mãn điều kiện z - 4 - 3 i = 5 . Tính P=a+b khi biểu thức |z+1-3i|+|z-1+i| đạt giá trị lớn nhất.
A. P=10
B. P=4
C. P=6
D. P=8
Cho số phức z thỏa mãn 5 z ¯ + i = 2 - i z + 1 . Gọi a, b lần lượt là phần thực và phần ảo của số phức 1 + z + z 2 , tổng a + b bằng
A. 13
B. -5
C. 9
D. 5
Cho số phức z = a + bi ( a , b ∈ ℕ ) thỏa mãn đồng thời hai điều kiện | z | = | z - 1 - i | và biểu thức A = | z - 2 + 2 i | + | z - 3 + i | đạt giá trị nhỏ nhất. Giá trị của biểu thức a + b bằng
A. -1.
B. 2.
C. -2.
D. 1.
Cho số phức z = 1 - i + i 3 . Tìm phần thực a và phần ảo b của z
A. a = 1; b = -2
B. a = -2; b = 1
C. a = 1; b = 0
D. a = 0; b = 1