Cho 2 số hữu tỉ\(\dfrac{a}{b}\)và\(\dfrac{c}{d}\)(b>0,d>0). Chứng tỏ rằng:
a, Nếu\(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)thì ad < bc
b. Nếu ad<bc thì \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)
Cho hai số hữu tỉ\(\dfrac{a}{b}\) và\(\dfrac{c}{d}\)(b>0,d>0).Chứng tỏ rằng:
a)Nếu\(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)thì ad<bc
b)Nếu ad<bc thì\(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)
Giúp mình với ạ mình cần gấp!!!
Cho hai số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\)(a,b,c,d ϵ Z; b,d ≠ 0)
Chứng tỏ rằng nếu \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) thì \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\).
Áp dụng: Tìm 3 số hữu tỉ lớn hơn \(\dfrac{-6}{7}\) và nhỏ hơn \(\dfrac{-1}{3}\).
Cho các số hữu tỉ \(\dfrac{a}{b}\)và\(\dfrac{c}{d}\) với mẫu dương, trong đó \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\). Chứng minh rằng:
A) ad<bc
B) \(\dfrac{a}{b}\)<\(\dfrac{a+c}{b+d}\)< \(\dfrac{c}{d}\)
a, Với mọi số dương \(a,b,c,d\) . Giải thích tại sao nếu \(\dfrac{a}{b}< \dfrac{c}{d}\) thì \(ad< bc\)
b, Vận dụng tính chất trên để giải thích tại sao \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Cho các số hữu tỉ với mẫu dương, trong đó \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\). CMR:
a) ad < bc.
b) \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\).
Gỉai giúp mình với cảm ơn các bạn nhiều!!!!!!!
Ai giải đúng cho 1 tick!
Chứng minh từ tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì ta suy ra được các tỉ lệ thức sau:\(\dfrac{a+b}{b}\)=\(\dfrac{c+d}{d}\);\(\dfrac{a-b}{b}\)=\(\dfrac{c-d}{d}\) và\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\).
a) Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) CMR: \(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
b) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì : \(\dfrac{a}{b}\)=\(\dfrac{3a+2c}{3b+2d}\)
c) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì \(\dfrac{7a^2+3ab}{11a^2-8b^2}\) = \(\dfrac{7c^2+3cd}{11c^{2^{ }}-8d^2}\)
cho hai số hữu tỉ a/b và c/d (b.0,d>0). chứng tỏ rằng:
a) nếu a/b<c/d thì ad<bc
b)Nếu ad<bc thì a/b<c/d