Đáp án B
Nếu hai số có tổng là S và tích là P thì hai số đó là hai nghiệm của phương trình X 2 - SX + P = 0 (ĐK: S 2 ≥ 4P)
Đáp án B
Nếu hai số có tổng là S và tích là P thì hai số đó là hai nghiệm của phương trình X 2 - SX + P = 0 (ĐK: S 2 ≥ 4P)
Tìm hai số x và y với S = x + y ; P = x.y biết :
Nếu có hai số u và v sao cho
u + v = S và uv = P ( S^2 lớn hơn hoặc bằng 4P ) thì u , v là hai nghiệm của phương trình:
x^2 - Sx + P = 0
1. x + y = 3 và xy = 2
Cho hai số có tổng là S và tích là P với S 2 ≥ 4 P . Khi đó hai số đó là hai nghiệm của phương trình nào dưới đây:
A. X 2 - PX + S = 0
B. X 2 - SX + P = 0
C. S X 2 - X + P = 0
D. X 2 - 2SX + P = 0
Nếu hai số x,y có tổng x+y=S và xy=P thì x,y là hai nghiệm của phương trình:
A.X2+SX-P=0 B.X2-SX+P=0
C.ax2+bx+c=0 D.X2-SX-P=0
Câu 1.8: Biết x là một số tự nhiên có hai chữ số, biết nếu đem x chia cho tổng các chữ số của x thì được thương là 4, dư là 3. Còn nếu đem x chia cho tích các chữ số của x thì được thương là 3 và dư là 5. Khi đó x = ......
Câu 1.9: Biết rằng phương trình x2 + px + 1 = 0 có 2 nghiệm là a, b và phương trình x2 + qx + 2 = 0 có 2 nghiệm b, c. Khi đo giá trị của biểu thức A = pq - (b - a)(b - c) = ...........
Câu 1.10: Cho x; y > 0 thỏa mãn x + y ≤ 1. Giá trị nhỏ nhất của biểu thức là: .......
giúp e với!! mai e thi r!!! hụ hụ
Cho phương trình
\(\left(m-1\right)x^2-2\left(m-3\right)x+m+1=0\)0
m khác 1
a/ xác định mm để phương trình có 2 nghiệm x1. x2
b/ Tìm m để phương trình có nghiệm x1=0, khi đó tìm nghiệm còn lại
c/ Với điều kiện của m vừa tìm được ở câu a, tìm hệ thức liên hệ giữa x1, x2 độc lập đối với tham số m
d/ Với đièu kiện của mm vừa tìm được ở câu a, gọi S và P lần lượt là tông và tích của 2 nghiệm của phương trình. Tìm các giá trị của m để S và P là các số nguyên
Muốn tìm hai số khi biết tổng của chúng bằng S, tích của chúng bằng P thì ta giải phương trình nào sau đây?
A) x 2 + Sx + P = 0
B) x 2 - Sx + P = 0
C) x 2 - Sx - P = 0
D) x 2 + Sx - P = 0
cho các phương trình x^2+mx và x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thìcacs nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt
cho các phương trình x^2+mx+ n và x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thì các nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt
cho các phương trình x^2+mx+n và x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thì các nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt