Đáp án B
Nếu hai số có tổng là S và tích là P thì hai số đó là hai nghiệm của phương trình X 2 - SX + P = 0 (ĐK: S 2 ≥ 4 P )
Đáp án B
Nếu hai số có tổng là S và tích là P thì hai số đó là hai nghiệm của phương trình X 2 - SX + P = 0 (ĐK: S 2 ≥ 4 P )
Nếu hai số x,y có tổng x+y=S và xy=P thì x,y là hai nghiệm của phương trình:
A.X2+SX-P=0 B.X2-SX+P=0
C.ax2+bx+c=0 D.X2-SX-P=0
Tìm hai số x và y với S = x + y ; P = x.y biết :
Nếu có hai số u và v sao cho
u + v = S và uv = P ( S^2 lớn hơn hoặc bằng 4P ) thì u , v là hai nghiệm của phương trình:
x^2 - Sx + P = 0
1. x + y = 3 và xy = 2
Câu 1.8: Biết x là một số tự nhiên có hai chữ số, biết nếu đem x chia cho tổng các chữ số của x thì được thương là 4, dư là 3. Còn nếu đem x chia cho tích các chữ số của x thì được thương là 3 và dư là 5. Khi đó x = ......
Câu 1.9: Biết rằng phương trình x2 + px + 1 = 0 có 2 nghiệm là a, b và phương trình x2 + qx + 2 = 0 có 2 nghiệm b, c. Khi đo giá trị của biểu thức A = pq - (b - a)(b - c) = ...........
Câu 1.10: Cho x; y > 0 thỏa mãn x + y ≤ 1. Giá trị nhỏ nhất của biểu thức là: .......
giúp e với!! mai e thi r!!! hụ hụ
Cho hai số có tổng là S và tích là P với S 2 ≥ 4P. Khi đó hai số đó là hai nghiệm của phương trình nào dưới đây:
A. X 2 - PX + S = 0
B. X 2 - SX + P = 0
C. S X 2 - X + P = 0
D. X 2 - 2SX + P = 0
Cho phương trình (2m - 1) x 2 - 2(m + 4)x + 5m + 2 = 0 ( m ≠ 1 2 )
Khi phương trình có nghiệm x 1 , x 2 hãy tính tổng S và tích P của hai nghiệm theo m
Cho phương trình
\(\left(m-1\right)x^2-2\left(m-3\right)x+m+1=0\)0
m khác 1
a/ xác định mm để phương trình có 2 nghiệm x1. x2
b/ Tìm m để phương trình có nghiệm x1=0, khi đó tìm nghiệm còn lại
c/ Với điều kiện của m vừa tìm được ở câu a, tìm hệ thức liên hệ giữa x1, x2 độc lập đối với tham số m
d/ Với đièu kiện của mm vừa tìm được ở câu a, gọi S và P lần lượt là tông và tích của 2 nghiệm của phương trình. Tìm các giá trị của m để S và P là các số nguyên
Muốn tìm hai số khi biết tổng của chúng bằng S, tích của chúng bằng P thì ta giải phương trình nào sau đây?
A) x 2 + Sx + P = 0
B) x 2 - Sx + P = 0
C) x 2 - Sx - P = 0
D) x 2 + Sx - P = 0
cho các phương trình x^2+mx và x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thìcacs nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt
cho các phương trình x^2+mx+ n và x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thì các nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt