Qua điểm B cắt (O)..... là thế nào bạn? Bạn coi lại đề.
Qua điểm B cắt (O)..... là thế nào bạn? Bạn coi lại đề.
1.Cho tam giác ABC có AD là tia phân giác trong của góc A. Quá D kẻ đường thẳng song song với AB cắt AC ở E và đường thẳng song song với AC cắt AB ở F.
a) Tứ giác AEDF là hình gì? Vì Sao?
b) Đường tròn đường kính AD cắt AB và AC lần lượt tại các điểm M và N. Chứng minh rằng: MN//EF.
2. Cho hai đường tròn (O;R) và(O';R') tiếp xúc trong với nhau tại A, (R>R'). Qua điểm B bất kỳ trên(O') vẽ tiếp tuyến với (O') cắt (O) tại hại điểm M và N, AB cắt (O) tại C. Chứng minh rằng:
a) MN vuông góc với OC
b) AC là tia phân giác của góc MAN
1 Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc trong với nhau tại A, (R > R'). Qua điểm B bất kỳ trên (O’) vẽ tiếp tuyến với (O’) cắt (O) tại hai điểm M và N, AB cắt (O) tại C. Chứng minh rằng:
a) MN ⊥ OC b) AC là tia phân giác của ∠MAN
Giup minh voi mn oi
1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau
2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA
3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.
4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!
Cho đường tròn (O;R) đường kính AB. Gọi H là một điểm bất kỳ trên đoạn OA (H khác hai điểm O, A). Dựng đường thẳng d vuông góc với OA tại H. Trên d lấy điểm C ở ngoài đường tròn (O). Kẻ các tiếp tuyến CM, CN với đường tròn (O); M và N là tiếp điểm, M cùng phía với A bờ CH. Các đường thẳng CM, CN cắt đường thẳng AB tại P và Q. Đường thẳng qua O và vuông góc với AB cắt MN tại K. CK cắt AB tại I. Chứng minh rằng: 1) HC là tia phân giác của góc MHN 2) I là trung điểm của đoạn thẳng PQ 3) Ba đường thẳng PN, QM và CH đồng quy.
cho hai đường tròn (Ô,R) và( I,r) tiếp xúc trong tại tiếp điểm A ( với R > r) d là tiếp tuyến chung của hai đường tròn tại tiếp điểm A . Dây AB của đường tròn (Ô,R) cắt đường tròn (I,r) tại M . Vẽ dây BC của đường tròn (O,R) sao cho BC tiếp xúc với đường tròn (I,r) tại K và tia BC cắt d tại S( B,O,C ko thẳng hàng) đoạn AC cắt đường tròn (I,r) tại N
Cminh;
a Hai đường thẳngMN vàSB song song với nhau
b, tia AK là yia phân giác của góc BAC
Cho (O;R) và (O';R') cắt nhau tại A và B. Trên tia đối của AB lấy điểm C. Kẻ tiếp tuyến CD,CE với (O), trong đó D,E là các tiếp điểm và E nằm trong (O'). Đường thẳng AD,AE cắt (O') lần lượt tại M và N. Tia DE cắt MN tại I. C/m rằng:
a) Tam giác MIB đồng dạng tam giác AEB
b) O'I vuông góc MN
Cho các đường tròn (O; R) và (O’; R’) tiếp xúc trong với nhau tại A (R > R’). Vẽ đường kính AB của (O), AB cắt (O’) tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O’), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a, AP là phân giác của B A Q ^
b, CP và BR song song với nhau
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Qua C kẻ đường thẳng d vuông góc với CA. lấy điểm M bất kỳ trên đường tròn (O) không trùng với A, B. Tia BM cắt đường thẳng d tại P. Tia CM cắt đường tròn (O) tại điểm thứ hai là N, tia PA cắt đường tròn (O) tại điểm thứ hai là Q.
1. Chứng minh tứ giác ACPM là tứ giác nội tiếp.
2. Tính BM.BP theo R.
3. Chứng minh hai đường thẳng PC và NQ song song.
4. Chứng minh trọng tâm G của tam giác CMB luôn nằm trên một đường tròn cố định khi điểm M thay đổi trên đường tròn (O).
làm câu 3 thôi
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB, AC của (O;R), (BC là các tiếp điểm).
1) Chứng minh rằng bốn điểm A,B,O,C cùng thuộc một đường tròn;
2) Lấy điểm I trên đường tròn (O;R) sao cho tia OI nằm giữa hai tia OA và OB. Qua I vẽ đường thẳng tiếp xúc với đường tròn (O;R) cắt AB,AC lần lượt tại M và N. Chứng minh MB+NC=MN;
3) Qua O vẽ đường thẳng vuông góc với OA cắt AB,AC lần lượt tại P và Q. Chứng minh rằng PM.QN=\(\frac{PQ^2}{4}\)