.
\(A\cap B\ne\varnothing\)khi \(\hept{\begin{cases}b\le a+2\\b+1\ge a\end{cases}\Leftrightarrow\hept{\begin{cases}b-a\le2\\b-a\ge-1\end{cases}}}\Leftrightarrow-1\le b-a\le2.\)
Ta tìm điều kiện để \(A\cap B=\varnothing\).
Có hai trường hợp :
TH1: \(a+2< b.\)
TH2: \(b+1< a.\)
Để hai trường hợp đều không xảy ra thì \(\hept{\begin{cases}a+2\ge b\\a\le b+1\end{cases}\Rightarrow\hept{\begin{cases}a\ge b-2\\a\le b+1\end{cases}\Rightarrow}b-2\le a\le b+1.}\)