Cho hai điểm A, B thuộc đồ thị hàm số y = sinx trên đoạn [0;π], các điểm C, D thuộc trục Ox thỏa mãn ABCD là hình chữ nhật và CD = 2 π /3. Độ dài của cạnh BC bằng
A. 2 2
B. 1 2
C. 1
D. 3 2
Cho hàm số y = x + 2 x - 2 có đồ thị (C). Xét hình chữ nhật ABCD có A B = 3 B C với A, B, C, D là bốn điểm thuộc đồ thị (C). khi đó độ dài AB bằng
A. 4
B. 4 3
C. 2 3
D. 3
Cho hàm số y = − x 3 + 3 x 2 + 9 x có đồ thị (C). Gọi A, B, C, D là bốn điểm trên đồ thị (C) với hoành độ lần lượt là a, b, c, d sao cho tứ giác ABCD là một hình thoi đồng thời hai tiếp tuyến tại A, C song song với nhau và đường thẳng AC tạo với hai trục tọa độ một tam giác cân. Tính tích abcd.
A. 144
B. 60
C. 180
D. 120
Cho hàm số y = 2 x + 1 2 x - m có đồ thị (C) và hai điểm A ( -2;3 ); C ( 4;1 ) . Tìm m để đường thẳng d : 3 x - y - 1 = 0 cắt đồ thị (C) tại hai điểm phân biệt B, D sao cho tứ giác ABCD là hình thoi
A. 8 3
B. 3 8
C. 4 3
D. 3 4
Cho đồ thị hàm số y = e − x 2 như hình vẽ, ABCD là hình chữ nhật thay đổi sao cho B,C luôn thuộc đồ thị hàm số đã cho và A,D nằm trên trục hoành. Giá trị lớn nhất của diện tích hình chữ nhật ABCD
A. 2 e
B. 2/e
C. 2 e
D. 2 e
Cho (C) là đồ thị của hàm số y = x - 3 x + 1 . Biết rằng, chỉ có hai điểm thuộc đồ thị (C) cách đều hai điểm A(2;0) và B(0;-2). Gọi các điểm đó lần lượt là M và N. Tìm tọa độ trung điểm I của đoạn thẳng MN.
A. I(-1;1)
B. I 0 ; - 3 2
C. I 0 ; 3 2
D. I(-2;2)
Cho đổ thị hàm số y = x + 1 x - 1 có đổ thị như hình vẽ. Biết A, B, C, D thuộc đồ thị hàm số sao cho ABCD là hình chữ nhật có diện tích 6. Độ dài cạnh AB là
A. 3 3
B. 3
C. 2 2
D. 2
Cho (C) là đồ thị của hàm số y = x - 3 x + 1 . Biết rằng chỉ có đúng hai điểm thuộc đồ thị (C) cách đều hai trục tọa độ. Gọi các điểm đó lần lượt là M và N. Tính độ dài đoạn thẳng MN
A. M N = 4 2
B. MN = 3
C. M N = 2 2
D. M N = 3 5
Cho hàm số y = f(x) =(ax+b)/(cx+d)(a,b,c,d ϵ R;c ≠ 0;d ≠ 0) có đồ thị (C). Đồ thị của hàm số y = f’(x) như hình vẽ dưới đây. Biết (C) cắt trục tung tại điểm có tung độ bằng 2. Tiếp tuyến của (C) tại giao điểm của (C) và trục hoành có phương trình là
A. x – 3y +2 = 0
B. x + 3y +2 = 0
C. x – 3y - 2 = 0
D. x + 3y -2 = 0