Trong mặt phẳng Oxy, cho điểm A(2;2) và các đường thẳng d 1 : x + y - 2 = 0 , d 2 : x + y - 8 = 0 . Biết rằng tồn tại điểm B b 1 ; b 2 thuộc đường thẳng d 1 và điểm C c 1 ; c 2 thuộc đường thẳng d 2 sao cho tam giác ABC vuông cân tại A. Tính giá trị của biểu thức T = b 1 c 2 - b 2 c 1 , biết điểm B có hoành độ không âm.
A. T = -14
B. T = 18
C. T = 11
D. T = 14
Cho các điểm A(2;3;0), B(0;-1;2) và đường thẳng d : x - 1 2 = y + 1 - 1 = z - 2 2 . Điểm M thuộc d sao cho diện tích tam giác MAB đạt giá trị nhỏ nhất là:
A. M ( 11 25 ; - 18 25 ; 36 25 )
B. M ( 38 25 ; - 63 25 ; 63 25 )
C. M ( 9 50 ; - 13 25 ; 33 50 )
D. Đ á p á n k h á c
Cho hàm số y = x + 2 x có đồ thị là (C) và đường thẳng d : y = x + m . Có tất cả bao nhiêu giá trị nguyên của tham số m trên đoạn 0 ; 2018 để đường thẳng (d) cắt (C) tại hai điểm phân biệt A;B sao cho tam giác MAB cân tại M, với M 1 2 ; 1 2 .
A. 2016
B. 2017
C. 2019
D. 2018
Trong không gian Oxyz, cho hai điểm A (0;-1;2); B (1;1;2) và đường thẳng d : x + 1 1 = y 1 = z - 1 1 . Biết điểm M (a;b;c) thuộc đường thẳng d sao cho tam giác MAB có diện tích nhỏ nhất. Khi đó, giá trị T = a + 2b + 3c bằng:
A. 5
B. 3
C. 4
D. 10
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):x+3y-2z+2=0 và đường thẳng d: x - 1 2 = y + 1 - 1 = z - 4 1 . Đường thẳng qua A(1;2;-1) và cắt (P), d lần lượt tại B và C(a;b;c) sao cho C là trung điểm của AB. Giá trị của biểu thức a+b+c bằng
A. -5
B. -12
C. -15
D. 11
Cho hàm số y = x + 2 2 x + 3 có đồ thị (C). Giả sử, đường thẳng d: y=kx+m là tiếp tuyến của (C), biết rằng d cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân tại gốc tọa độ O. Tổng k+m có giá trị bằng:
A. 1.
B. 3.
C. -1
D. -3
Cho (C) là đồ thị của hàm số y = x - 2 x + 1 và đường thẳng d : y = m x + 1 . Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A. m ≥ 0
B. m < 0
C. m ≤ 0
D. m > 0
Cho d : x + 2 1 = y - 1 3 = z + 5 - 2 và A(-2;1;1), B(-3;-1;2). Gọi M là điểm thuộc đường thẳng d sao cho tam giác AMB có diện tích 3 5 Tìm tọa độ điểm M
A. M(2;-1;5)
B. M(-14;-35;19) hoặc M(2;1;5)
C. M(-14;-35;19)
D. M(-14;-35;19) hoặc M(-2;1;-5)
Giả sử m = - a b , a , b ∈ Z + , ( a , b ) = 1 là giá trị thực của tham số m để đường thẳng d : y = - 3 x + m cắt đồ thị hàm số y = 2 a + 1 x - 1 tại hai điểm phân biệt A,B sao cho trọng tâm tam giác OAB thuộc đường thẳng ∆ : x - 2 y - 2 = 0 với O là gốc tọa độ. Tính a+2b
A. 2
B. 5
C. 11
D. 21