Cho hai điểm A ( 1 ; 1 ; 2 ) , B ( 2 ; 1 ; - 2 ) . Mặt cầu có tâm thuộc trục hoành và đi qua hai điểm A,B có phương trình là
A. ( x - 3 2 ) 2 + y 2 + z 2 = 21 2
B. ( x + 3 2 ) 2 + y 2 + z 2 = 21 4
C. ( x + 3 2 ) 2 + y 2 + z 2 = 21 2
D. ( x - 3 2 ) 2 + y 2 + z 2 = 21 4
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2
Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 9 điểm A(0;0;2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là
A. ( P ) : x + 2 y + 3 z + 6 = 0
B. ( P ) : x + 2 y + z - 2 = 0
C. ( P ) : x - 2 y + z - 6 = 0
D. ( P ) : 3 x + 2 y + 2 z - 4 = 0
Cho mệnh đề:
1) Mặt cầu có tâm I(3;-2;4) và đi qua A(7;2;1) là ( x - 3 ) 2 + ( y + 2 ) 2 + ( z - 4 ) 2 = 41
2) Mặt cầu có tâm I(2;-1;3) và tiếp xúc với mp (Oxy) là ( x - 2 ) 2 + ( y - 1 ) 2 + ( z + 3 ) 2 = 9
3) Mặt cầu có tâm I(2;-1;3) và tiếp xúc với mp (Oxz) là ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 3 ) 2 = 1
4) Mặt cầu có tâm I(2;-1;3) và tiếp xúc với mp (Oyz) là ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 3 ) 2 = 4
Số mệnh đề đúng là bao nhiêu:
A. 4
B. 1
C. 2
D. 3
Cho hai điểm A(1;2;3), B(2;0;4) và đường thẳng ( d ) : x - 1 1 = y - 2 1 = z - 1 - 2 . Mặt phẳng qua A, B và song song với (d) có phương trình là
A. x+y+z-6=0
B. 2x+y+z-4=0
C. x-y+z-6=0
D. x-y+2z-10=0
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y 1 = z - 2 và hai điểm A(2;1;0), B(-2;3;2). Viết phương trình mặt cầu đi qua A,B và có tâm I thuộc đường thẳng d.
A. x - 3 2 + y - 1 2 + z + 2 2 = 5
B. x - 1 2 + y - 1 2 + z + 2 2 = 17
C. x + 1 2 + y + 1 2 + z - 2 2 = 17
D. x + 3 2 + y + 1 2 + z - 2 2 = 5
Cho A là giao điểm của đường thẳng d : x - 1 2 = y + 2 - 3 = z - 5 4 và mặt phẳng P : 2 x + 2 y - z + 1 = 0 . Phương trình mặt cầu (S) có tâm I(1;2;-3) và đi qua A là
A. x - 1 2 + y - 1 2 + z + 3 2 = 21
B. x - 1 2 + y - 2 2 + z + 3 2 = 25
C. x + 1 2 + y + 2 2 + z + 3 2 = 21
D. x + 1 2 + y + 2 2 + z + 3 2 = 25
Cho đường thẳng d : x − 1 1 = y − 2 − 2 = z − 2 1 và điểm A (1; 2; 1). Tìm bán kính của mặt cầu có tâm I nằm trên d, đi qua A và tiếp xúc với mặt phẳng (P): x - 2 y + 2 z + 1 = 0
A. R = 2
B. R = 4
C. R = 1
D. R = 3
Trong không gian Oxyz cho đường thẳng d: x 2 = y 2 = z + 3 - 1 và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi Δ là đường thẳng đi qua A(2;1;3) vuông góc với đường thẳng (d) và cắt (S) tại 2 điểm có khoảng cách lớn nhất. Khi đó đường thẳng Δ có một vectơ chỉ phương là u → ( 1 ; a ; b ) . Tính a + b
A. 4
B. -2
C. - 1 2
D. 5